Metamath Proof Explorer


Theorem disjdifprg

Description: A trivial partition into a subset and its complement. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion disjdifprg AVBWDisjxBAAx

Proof

Step Hyp Ref Expression
1 disjxsn Disjxx
2 simpr BWB=B=
3 eqidd BWB==
4 id BWBW
5 0ex V
6 5 a1i BWV
7 4 6 preqsnd BWB=B==
8 7 adantr BWB=B=B==
9 2 3 8 mpbir2and BWB=B=
10 9 disjeq1d BWB=DisjxBxDisjxx
11 1 10 mpbiri BWB=DisjxBx
12 in0 B=
13 elex BWBV
14 13 adantr BWBBV
15 5 a1i BWBV
16 simpr BWBB
17 id x=Bx=B
18 id x=x=
19 17 18 disjprg BVVBDisjxBxB=
20 14 15 16 19 syl3anc BWBDisjxBxB=
21 12 20 mpbiri BWBDisjxBx
22 11 21 pm2.61dane BWDisjxBx
23 22 ad2antlr AVBWA=DisjxBx
24 difeq2 A=BA=B
25 dif0 B=B
26 24 25 eqtrdi A=BA=B
27 id A=A=
28 26 27 preq12d A=BAA=B
29 28 disjeq1d A=DisjxBAAxDisjxBx
30 29 adantl AVBWA=DisjxBAAxDisjxBx
31 23 30 mpbird AVBWA=DisjxBAAx
32 disjdifr BAA=
33 difexg BWBAV
34 33 ad2antlr AVBW¬A=BAV
35 elex AVAV
36 35 ad2antrr AVBW¬A=AV
37 ssid BABA
38 ssdifeq0 ABAA=
39 38 notbii ¬ABA¬A=
40 nssne2 BABA¬ABABAA
41 39 40 sylan2br BABA¬A=BAA
42 37 41 mpan ¬A=BAA
43 42 adantl AVBW¬A=BAA
44 id x=BAx=BA
45 id x=Ax=A
46 44 45 disjprg BAVAVBAADisjxBAAxBAA=
47 34 36 43 46 syl3anc AVBW¬A=DisjxBAAxBAA=
48 32 47 mpbiri AVBW¬A=DisjxBAAx
49 31 48 pm2.61dan AVBWDisjxBAAx