Metamath Proof Explorer


Theorem disjdifprg

Description: A trivial partition into a subset and its complement. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion disjdifprg A V B W Disj x B A A x

Proof

Step Hyp Ref Expression
1 disjxsn Disj x x
2 simpr B W B = B =
3 eqidd B W B = =
4 id B W B W
5 0ex V
6 5 a1i B W V
7 4 6 preqsnd B W B = B = =
8 7 adantr B W B = B = B = =
9 2 3 8 mpbir2and B W B = B =
10 9 disjeq1d B W B = Disj x B x Disj x x
11 1 10 mpbiri B W B = Disj x B x
12 in0 B =
13 elex B W B V
14 13 adantr B W B B V
15 5 a1i B W B V
16 simpr B W B B
17 id x = B x = B
18 id x = x =
19 17 18 disjprg B V V B Disj x B x B =
20 14 15 16 19 syl3anc B W B Disj x B x B =
21 12 20 mpbiri B W B Disj x B x
22 11 21 pm2.61dane B W Disj x B x
23 22 ad2antlr A V B W A = Disj x B x
24 difeq2 A = B A = B
25 dif0 B = B
26 24 25 eqtrdi A = B A = B
27 id A = A =
28 26 27 preq12d A = B A A = B
29 28 disjeq1d A = Disj x B A A x Disj x B x
30 29 adantl A V B W A = Disj x B A A x Disj x B x
31 23 30 mpbird A V B W A = Disj x B A A x
32 disjdifr B A A =
33 difexg B W B A V
34 33 ad2antlr A V B W ¬ A = B A V
35 elex A V A V
36 35 ad2antrr A V B W ¬ A = A V
37 ssid B A B A
38 ssdifeq0 A B A A =
39 38 notbii ¬ A B A ¬ A =
40 nssne2 B A B A ¬ A B A B A A
41 39 40 sylan2br B A B A ¬ A = B A A
42 37 41 mpan ¬ A = B A A
43 42 adantl A V B W ¬ A = B A A
44 id x = B A x = B A
45 id x = A x = A
46 44 45 disjprg B A V A V B A A Disj x B A A x B A A =
47 34 36 43 46 syl3anc A V B W ¬ A = Disj x B A A x B A A =
48 32 47 mpbiri A V B W ¬ A = Disj x B A A x
49 31 48 pm2.61dan A V B W Disj x B A A x