Description: A trivial partition into a subset and its complement. (Contributed by Thierry Arnoux, 25-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | disjdifprg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjxsn | |
|
2 | simpr | |
|
3 | eqidd | |
|
4 | id | |
|
5 | 0ex | |
|
6 | 5 | a1i | |
7 | 4 6 | preqsnd | |
8 | 7 | adantr | |
9 | 2 3 8 | mpbir2and | |
10 | 9 | disjeq1d | |
11 | 1 10 | mpbiri | |
12 | in0 | |
|
13 | elex | |
|
14 | 13 | adantr | |
15 | 5 | a1i | |
16 | simpr | |
|
17 | id | |
|
18 | id | |
|
19 | 17 18 | disjprg | |
20 | 14 15 16 19 | syl3anc | |
21 | 12 20 | mpbiri | |
22 | 11 21 | pm2.61dane | |
23 | 22 | ad2antlr | |
24 | difeq2 | |
|
25 | dif0 | |
|
26 | 24 25 | eqtrdi | |
27 | id | |
|
28 | 26 27 | preq12d | |
29 | 28 | disjeq1d | |
30 | 29 | adantl | |
31 | 23 30 | mpbird | |
32 | disjdifr | |
|
33 | difexg | |
|
34 | 33 | ad2antlr | |
35 | elex | |
|
36 | 35 | ad2antrr | |
37 | ssid | |
|
38 | ssdifeq0 | |
|
39 | 38 | notbii | |
40 | nssne2 | |
|
41 | 39 40 | sylan2br | |
42 | 37 41 | mpan | |
43 | 42 | adantl | |
44 | id | |
|
45 | id | |
|
46 | 44 45 | disjprg | |
47 | 34 36 43 46 | syl3anc | |
48 | 32 47 | mpbiri | |
49 | 31 48 | pm2.61dan | |