Metamath Proof Explorer


Theorem disjdifprg2

Description: A trivial partition of a set into its difference and intersection with another set. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion disjdifprg2 AVDisjxABABx

Proof

Step Hyp Ref Expression
1 inex1g AVABV
2 elex AVAV
3 disjdifprg ABVAVDisjxAABABx
4 1 2 3 syl2anc AVDisjxAABABx
5 difin AAB=AB
6 5 preq1i AABAB=ABAB
7 6 a1i AVAABAB=ABAB
8 7 disjeq1d AVDisjxAABABxDisjxABABx
9 4 8 mpbid AVDisjxABABx