Metamath Proof Explorer


Theorem disjdifprg2

Description: A trivial partition of a set into its difference and intersection with another set. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion disjdifprg2 ( 𝐴𝑉Disj 𝑥 ∈ { ( 𝐴𝐵 ) , ( 𝐴𝐵 ) } 𝑥 )

Proof

Step Hyp Ref Expression
1 inex1g ( 𝐴𝑉 → ( 𝐴𝐵 ) ∈ V )
2 elex ( 𝐴𝑉𝐴 ∈ V )
3 disjdifprg ( ( ( 𝐴𝐵 ) ∈ V ∧ 𝐴 ∈ V ) → Disj 𝑥 ∈ { ( 𝐴 ∖ ( 𝐴𝐵 ) ) , ( 𝐴𝐵 ) } 𝑥 )
4 1 2 3 syl2anc ( 𝐴𝑉Disj 𝑥 ∈ { ( 𝐴 ∖ ( 𝐴𝐵 ) ) , ( 𝐴𝐵 ) } 𝑥 )
5 difin ( 𝐴 ∖ ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )
6 5 preq1i { ( 𝐴 ∖ ( 𝐴𝐵 ) ) , ( 𝐴𝐵 ) } = { ( 𝐴𝐵 ) , ( 𝐴𝐵 ) }
7 6 a1i ( 𝐴𝑉 → { ( 𝐴 ∖ ( 𝐴𝐵 ) ) , ( 𝐴𝐵 ) } = { ( 𝐴𝐵 ) , ( 𝐴𝐵 ) } )
8 7 disjeq1d ( 𝐴𝑉 → ( Disj 𝑥 ∈ { ( 𝐴 ∖ ( 𝐴𝐵 ) ) , ( 𝐴𝐵 ) } 𝑥Disj 𝑥 ∈ { ( 𝐴𝐵 ) , ( 𝐴𝐵 ) } 𝑥 ) )
9 4 8 mpbid ( 𝐴𝑉Disj 𝑥 ∈ { ( 𝐴𝐵 ) , ( 𝐴𝐵 ) } 𝑥 )