| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inex1g |
|- ( A e. V -> ( A i^i B ) e. _V ) |
| 2 |
|
elex |
|- ( A e. V -> A e. _V ) |
| 3 |
|
disjdifprg |
|- ( ( ( A i^i B ) e. _V /\ A e. _V ) -> Disj_ x e. { ( A \ ( A i^i B ) ) , ( A i^i B ) } x ) |
| 4 |
1 2 3
|
syl2anc |
|- ( A e. V -> Disj_ x e. { ( A \ ( A i^i B ) ) , ( A i^i B ) } x ) |
| 5 |
|
difin |
|- ( A \ ( A i^i B ) ) = ( A \ B ) |
| 6 |
5
|
preq1i |
|- { ( A \ ( A i^i B ) ) , ( A i^i B ) } = { ( A \ B ) , ( A i^i B ) } |
| 7 |
6
|
a1i |
|- ( A e. V -> { ( A \ ( A i^i B ) ) , ( A i^i B ) } = { ( A \ B ) , ( A i^i B ) } ) |
| 8 |
7
|
disjeq1d |
|- ( A e. V -> ( Disj_ x e. { ( A \ ( A i^i B ) ) , ( A i^i B ) } x <-> Disj_ x e. { ( A \ B ) , ( A i^i B ) } x ) ) |
| 9 |
4 8
|
mpbid |
|- ( A e. V -> Disj_ x e. { ( A \ B ) , ( A i^i B ) } x ) |