Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disjss1f.1 | |- F/_ x A |
|
| disjss1f.2 | |- F/_ x B |
||
| Assertion | disjeq1f | |- ( A = B -> ( Disj_ x e. A C <-> Disj_ x e. B C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjss1f.1 | |- F/_ x A |
|
| 2 | disjss1f.2 | |- F/_ x B |
|
| 3 | eqimss2 | |- ( A = B -> B C_ A ) |
|
| 4 | 2 1 | disjss1f | |- ( B C_ A -> ( Disj_ x e. A C -> Disj_ x e. B C ) ) |
| 5 | 3 4 | syl | |- ( A = B -> ( Disj_ x e. A C -> Disj_ x e. B C ) ) |
| 6 | eqimss | |- ( A = B -> A C_ B ) |
|
| 7 | 1 2 | disjss1f | |- ( A C_ B -> ( Disj_ x e. B C -> Disj_ x e. A C ) ) |
| 8 | 6 7 | syl | |- ( A = B -> ( Disj_ x e. B C -> Disj_ x e. A C ) ) |
| 9 | 5 8 | impbid | |- ( A = B -> ( Disj_ x e. A C <-> Disj_ x e. B C ) ) |