Metamath Proof Explorer


Theorem disjss1f

Description: A subset of a disjoint collection is disjoint. (Contributed by Thierry Arnoux, 6-Apr-2017)

Ref Expression
Hypotheses disjss1f.1
|- F/_ x A
disjss1f.2
|- F/_ x B
Assertion disjss1f
|- ( A C_ B -> ( Disj_ x e. B C -> Disj_ x e. A C ) )

Proof

Step Hyp Ref Expression
1 disjss1f.1
 |-  F/_ x A
2 disjss1f.2
 |-  F/_ x B
3 1 2 ssrmof
 |-  ( A C_ B -> ( E* x e. B y e. C -> E* x e. A y e. C ) )
4 3 alimdv
 |-  ( A C_ B -> ( A. y E* x e. B y e. C -> A. y E* x e. A y e. C ) )
5 df-disj
 |-  ( Disj_ x e. B C <-> A. y E* x e. B y e. C )
6 df-disj
 |-  ( Disj_ x e. A C <-> A. y E* x e. A y e. C )
7 4 5 6 3imtr4g
 |-  ( A C_ B -> ( Disj_ x e. B C -> Disj_ x e. A C ) )