Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ ( A i^i B ) = (/) ) -> M e. ( measures ` S ) ) |
2 |
|
measbase |
|- ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra ) |
3 |
2
|
3ad2ant1 |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ ( A i^i B ) = (/) ) -> S e. U. ran sigAlgebra ) |
4 |
|
simp2l |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ ( A i^i B ) = (/) ) -> A e. S ) |
5 |
|
simp2r |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ ( A i^i B ) = (/) ) -> B e. S ) |
6 |
|
unelsiga |
|- ( ( S e. U. ran sigAlgebra /\ A e. S /\ B e. S ) -> ( A u. B ) e. S ) |
7 |
3 4 5 6
|
syl3anc |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ ( A i^i B ) = (/) ) -> ( A u. B ) e. S ) |
8 |
|
ssun2 |
|- B C_ ( A u. B ) |
9 |
8
|
a1i |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ ( A i^i B ) = (/) ) -> B C_ ( A u. B ) ) |
10 |
|
measxun2 |
|- ( ( M e. ( measures ` S ) /\ ( ( A u. B ) e. S /\ B e. S ) /\ B C_ ( A u. B ) ) -> ( M ` ( A u. B ) ) = ( ( M ` B ) +e ( M ` ( ( A u. B ) \ B ) ) ) ) |
11 |
1 7 5 9 10
|
syl121anc |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ ( A i^i B ) = (/) ) -> ( M ` ( A u. B ) ) = ( ( M ` B ) +e ( M ` ( ( A u. B ) \ B ) ) ) ) |
12 |
|
difun2 |
|- ( ( A u. B ) \ B ) = ( A \ B ) |
13 |
|
uneq1 |
|- ( ( A i^i B ) = (/) -> ( ( A i^i B ) u. ( A \ B ) ) = ( (/) u. ( A \ B ) ) ) |
14 |
|
uncom |
|- ( (/) u. ( A \ B ) ) = ( ( A \ B ) u. (/) ) |
15 |
|
un0 |
|- ( ( A \ B ) u. (/) ) = ( A \ B ) |
16 |
14 15
|
eqtri |
|- ( (/) u. ( A \ B ) ) = ( A \ B ) |
17 |
13 16
|
eqtrdi |
|- ( ( A i^i B ) = (/) -> ( ( A i^i B ) u. ( A \ B ) ) = ( A \ B ) ) |
18 |
|
inundif |
|- ( ( A i^i B ) u. ( A \ B ) ) = A |
19 |
17 18
|
eqtr3di |
|- ( ( A i^i B ) = (/) -> ( A \ B ) = A ) |
20 |
12 19
|
syl5eq |
|- ( ( A i^i B ) = (/) -> ( ( A u. B ) \ B ) = A ) |
21 |
20
|
fveq2d |
|- ( ( A i^i B ) = (/) -> ( M ` ( ( A u. B ) \ B ) ) = ( M ` A ) ) |
22 |
21
|
oveq2d |
|- ( ( A i^i B ) = (/) -> ( ( M ` B ) +e ( M ` ( ( A u. B ) \ B ) ) ) = ( ( M ` B ) +e ( M ` A ) ) ) |
23 |
22
|
3ad2ant3 |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ ( A i^i B ) = (/) ) -> ( ( M ` B ) +e ( M ` ( ( A u. B ) \ B ) ) ) = ( ( M ` B ) +e ( M ` A ) ) ) |
24 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
25 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ B e. S ) -> ( M ` B ) e. ( 0 [,] +oo ) ) |
26 |
24 25
|
sselid |
|- ( ( M e. ( measures ` S ) /\ B e. S ) -> ( M ` B ) e. RR* ) |
27 |
1 5 26
|
syl2anc |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ ( A i^i B ) = (/) ) -> ( M ` B ) e. RR* ) |
28 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( M ` A ) e. ( 0 [,] +oo ) ) |
29 |
24 28
|
sselid |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( M ` A ) e. RR* ) |
30 |
1 4 29
|
syl2anc |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ ( A i^i B ) = (/) ) -> ( M ` A ) e. RR* ) |
31 |
|
xaddcom |
|- ( ( ( M ` B ) e. RR* /\ ( M ` A ) e. RR* ) -> ( ( M ` B ) +e ( M ` A ) ) = ( ( M ` A ) +e ( M ` B ) ) ) |
32 |
27 30 31
|
syl2anc |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ ( A i^i B ) = (/) ) -> ( ( M ` B ) +e ( M ` A ) ) = ( ( M ` A ) +e ( M ` B ) ) ) |
33 |
11 23 32
|
3eqtrd |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ ( A i^i B ) = (/) ) -> ( M ` ( A u. B ) ) = ( ( M ` A ) +e ( M ` B ) ) ) |