Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> M e. ( measures ` S ) ) |
2 |
|
simp2r |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> B e. S ) |
3 |
|
measbase |
|- ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra ) |
4 |
1 3
|
syl |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> S e. U. ran sigAlgebra ) |
5 |
|
simp2l |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> A e. S ) |
6 |
|
difelsiga |
|- ( ( S e. U. ran sigAlgebra /\ A e. S /\ B e. S ) -> ( A \ B ) e. S ) |
7 |
4 5 2 6
|
syl3anc |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> ( A \ B ) e. S ) |
8 |
|
prelpwi |
|- ( ( B e. S /\ ( A \ B ) e. S ) -> { B , ( A \ B ) } e. ~P S ) |
9 |
2 7 8
|
syl2anc |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> { B , ( A \ B ) } e. ~P S ) |
10 |
|
prct |
|- ( ( B e. S /\ ( A \ B ) e. S ) -> { B , ( A \ B ) } ~<_ _om ) |
11 |
2 7 10
|
syl2anc |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> { B , ( A \ B ) } ~<_ _om ) |
12 |
|
simp3 |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> B C_ A ) |
13 |
|
disjdifprg2 |
|- ( A e. S -> Disj_ x e. { ( A \ B ) , ( A i^i B ) } x ) |
14 |
|
prcom |
|- { ( A \ B ) , B } = { B , ( A \ B ) } |
15 |
|
dfss |
|- ( B C_ A <-> B = ( B i^i A ) ) |
16 |
15
|
biimpi |
|- ( B C_ A -> B = ( B i^i A ) ) |
17 |
|
incom |
|- ( B i^i A ) = ( A i^i B ) |
18 |
16 17
|
eqtrdi |
|- ( B C_ A -> B = ( A i^i B ) ) |
19 |
18
|
preq2d |
|- ( B C_ A -> { ( A \ B ) , B } = { ( A \ B ) , ( A i^i B ) } ) |
20 |
14 19
|
eqtr3id |
|- ( B C_ A -> { B , ( A \ B ) } = { ( A \ B ) , ( A i^i B ) } ) |
21 |
20
|
disjeq1d |
|- ( B C_ A -> ( Disj_ x e. { B , ( A \ B ) } x <-> Disj_ x e. { ( A \ B ) , ( A i^i B ) } x ) ) |
22 |
21
|
biimprd |
|- ( B C_ A -> ( Disj_ x e. { ( A \ B ) , ( A i^i B ) } x -> Disj_ x e. { B , ( A \ B ) } x ) ) |
23 |
13 22
|
mpan9 |
|- ( ( A e. S /\ B C_ A ) -> Disj_ x e. { B , ( A \ B ) } x ) |
24 |
5 12 23
|
syl2anc |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> Disj_ x e. { B , ( A \ B ) } x ) |
25 |
11 24
|
jca |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> ( { B , ( A \ B ) } ~<_ _om /\ Disj_ x e. { B , ( A \ B ) } x ) ) |
26 |
|
measvun |
|- ( ( M e. ( measures ` S ) /\ { B , ( A \ B ) } e. ~P S /\ ( { B , ( A \ B ) } ~<_ _om /\ Disj_ x e. { B , ( A \ B ) } x ) ) -> ( M ` U. { B , ( A \ B ) } ) = sum* x e. { B , ( A \ B ) } ( M ` x ) ) |
27 |
1 9 25 26
|
syl3anc |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> ( M ` U. { B , ( A \ B ) } ) = sum* x e. { B , ( A \ B ) } ( M ` x ) ) |
28 |
2 7
|
jca |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> ( B e. S /\ ( A \ B ) e. S ) ) |
29 |
|
uniprg |
|- ( ( B e. S /\ ( A \ B ) e. S ) -> U. { B , ( A \ B ) } = ( B u. ( A \ B ) ) ) |
30 |
|
undif |
|- ( B C_ A <-> ( B u. ( A \ B ) ) = A ) |
31 |
30
|
biimpi |
|- ( B C_ A -> ( B u. ( A \ B ) ) = A ) |
32 |
29 31
|
sylan9eq |
|- ( ( ( B e. S /\ ( A \ B ) e. S ) /\ B C_ A ) -> U. { B , ( A \ B ) } = A ) |
33 |
32
|
fveq2d |
|- ( ( ( B e. S /\ ( A \ B ) e. S ) /\ B C_ A ) -> ( M ` U. { B , ( A \ B ) } ) = ( M ` A ) ) |
34 |
28 12 33
|
syl2anc |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> ( M ` U. { B , ( A \ B ) } ) = ( M ` A ) ) |
35 |
|
simpr |
|- ( ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) /\ x = B ) -> x = B ) |
36 |
35
|
fveq2d |
|- ( ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) /\ x = B ) -> ( M ` x ) = ( M ` B ) ) |
37 |
|
simpr |
|- ( ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) /\ x = ( A \ B ) ) -> x = ( A \ B ) ) |
38 |
37
|
fveq2d |
|- ( ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) /\ x = ( A \ B ) ) -> ( M ` x ) = ( M ` ( A \ B ) ) ) |
39 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ B e. S ) -> ( M ` B ) e. ( 0 [,] +oo ) ) |
40 |
1 2 39
|
syl2anc |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> ( M ` B ) e. ( 0 [,] +oo ) ) |
41 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ ( A \ B ) e. S ) -> ( M ` ( A \ B ) ) e. ( 0 [,] +oo ) ) |
42 |
1 7 41
|
syl2anc |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> ( M ` ( A \ B ) ) e. ( 0 [,] +oo ) ) |
43 |
|
eqimss |
|- ( B = ( A \ B ) -> B C_ ( A \ B ) ) |
44 |
|
ssdifeq0 |
|- ( B C_ ( A \ B ) <-> B = (/) ) |
45 |
43 44
|
sylib |
|- ( B = ( A \ B ) -> B = (/) ) |
46 |
45
|
fveq2d |
|- ( B = ( A \ B ) -> ( M ` B ) = ( M ` (/) ) ) |
47 |
|
measvnul |
|- ( M e. ( measures ` S ) -> ( M ` (/) ) = 0 ) |
48 |
46 47
|
sylan9eqr |
|- ( ( M e. ( measures ` S ) /\ B = ( A \ B ) ) -> ( M ` B ) = 0 ) |
49 |
1 48
|
sylan |
|- ( ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) /\ B = ( A \ B ) ) -> ( M ` B ) = 0 ) |
50 |
49
|
orcd |
|- ( ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) /\ B = ( A \ B ) ) -> ( ( M ` B ) = 0 \/ ( M ` B ) = +oo ) ) |
51 |
50
|
ex |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> ( B = ( A \ B ) -> ( ( M ` B ) = 0 \/ ( M ` B ) = +oo ) ) ) |
52 |
36 38 2 7 40 42 51
|
esumpr2 |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> sum* x e. { B , ( A \ B ) } ( M ` x ) = ( ( M ` B ) +e ( M ` ( A \ B ) ) ) ) |
53 |
27 34 52
|
3eqtr3d |
|- ( ( M e. ( measures ` S ) /\ ( A e. S /\ B e. S ) /\ B C_ A ) -> ( M ` A ) = ( ( M ` B ) +e ( M ` ( A \ B ) ) ) ) |