| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|
| 2 |
|
simp2r |
|
| 3 |
|
measbase |
|
| 4 |
1 3
|
syl |
|
| 5 |
|
simp2l |
|
| 6 |
|
difelsiga |
|
| 7 |
4 5 2 6
|
syl3anc |
|
| 8 |
|
prelpwi |
|
| 9 |
2 7 8
|
syl2anc |
|
| 10 |
|
prct |
|
| 11 |
2 7 10
|
syl2anc |
|
| 12 |
|
simp3 |
|
| 13 |
|
disjdifprg2 |
|
| 14 |
|
prcom |
|
| 15 |
|
dfss |
|
| 16 |
15
|
biimpi |
|
| 17 |
|
incom |
|
| 18 |
16 17
|
eqtrdi |
|
| 19 |
18
|
preq2d |
|
| 20 |
14 19
|
eqtr3id |
|
| 21 |
20
|
disjeq1d |
|
| 22 |
21
|
biimprd |
|
| 23 |
13 22
|
mpan9 |
|
| 24 |
5 12 23
|
syl2anc |
|
| 25 |
11 24
|
jca |
|
| 26 |
|
measvun |
|
| 27 |
1 9 25 26
|
syl3anc |
|
| 28 |
2 7
|
jca |
|
| 29 |
|
uniprg |
|
| 30 |
|
undif |
|
| 31 |
30
|
biimpi |
|
| 32 |
29 31
|
sylan9eq |
|
| 33 |
32
|
fveq2d |
|
| 34 |
28 12 33
|
syl2anc |
|
| 35 |
|
simpr |
|
| 36 |
35
|
fveq2d |
|
| 37 |
|
simpr |
|
| 38 |
37
|
fveq2d |
|
| 39 |
|
measvxrge0 |
|
| 40 |
1 2 39
|
syl2anc |
|
| 41 |
|
measvxrge0 |
|
| 42 |
1 7 41
|
syl2anc |
|
| 43 |
|
eqimss |
|
| 44 |
|
ssdifeq0 |
|
| 45 |
43 44
|
sylib |
|
| 46 |
45
|
fveq2d |
|
| 47 |
|
measvnul |
|
| 48 |
46 47
|
sylan9eqr |
|
| 49 |
1 48
|
sylan |
|
| 50 |
49
|
orcd |
|
| 51 |
50
|
ex |
|
| 52 |
36 38 2 7 40 42 51
|
esumpr2 |
|
| 53 |
27 34 52
|
3eqtr3d |
|