Metamath Proof Explorer


Theorem measxun2

Description: The measure the union of two complementary sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017)

Ref Expression
Assertion measxun2 M measures S A S B S B A M A = M B + 𝑒 M A B

Proof

Step Hyp Ref Expression
1 simp1 M measures S A S B S B A M measures S
2 simp2r M measures S A S B S B A B S
3 measbase M measures S S ran sigAlgebra
4 1 3 syl M measures S A S B S B A S ran sigAlgebra
5 simp2l M measures S A S B S B A A S
6 difelsiga S ran sigAlgebra A S B S A B S
7 4 5 2 6 syl3anc M measures S A S B S B A A B S
8 prelpwi B S A B S B A B 𝒫 S
9 2 7 8 syl2anc M measures S A S B S B A B A B 𝒫 S
10 prct B S A B S B A B ω
11 2 7 10 syl2anc M measures S A S B S B A B A B ω
12 simp3 M measures S A S B S B A B A
13 disjdifprg2 A S Disj x A B A B x
14 prcom A B B = B A B
15 dfss B A B = B A
16 15 biimpi B A B = B A
17 incom B A = A B
18 16 17 eqtrdi B A B = A B
19 18 preq2d B A A B B = A B A B
20 14 19 eqtr3id B A B A B = A B A B
21 20 disjeq1d B A Disj x B A B x Disj x A B A B x
22 21 biimprd B A Disj x A B A B x Disj x B A B x
23 13 22 mpan9 A S B A Disj x B A B x
24 5 12 23 syl2anc M measures S A S B S B A Disj x B A B x
25 11 24 jca M measures S A S B S B A B A B ω Disj x B A B x
26 measvun M measures S B A B 𝒫 S B A B ω Disj x B A B x M B A B = * x B A B M x
27 1 9 25 26 syl3anc M measures S A S B S B A M B A B = * x B A B M x
28 2 7 jca M measures S A S B S B A B S A B S
29 uniprg B S A B S B A B = B A B
30 undif B A B A B = A
31 30 biimpi B A B A B = A
32 29 31 sylan9eq B S A B S B A B A B = A
33 32 fveq2d B S A B S B A M B A B = M A
34 28 12 33 syl2anc M measures S A S B S B A M B A B = M A
35 simpr M measures S A S B S B A x = B x = B
36 35 fveq2d M measures S A S B S B A x = B M x = M B
37 simpr M measures S A S B S B A x = A B x = A B
38 37 fveq2d M measures S A S B S B A x = A B M x = M A B
39 measvxrge0 M measures S B S M B 0 +∞
40 1 2 39 syl2anc M measures S A S B S B A M B 0 +∞
41 measvxrge0 M measures S A B S M A B 0 +∞
42 1 7 41 syl2anc M measures S A S B S B A M A B 0 +∞
43 eqimss B = A B B A B
44 ssdifeq0 B A B B =
45 43 44 sylib B = A B B =
46 45 fveq2d B = A B M B = M
47 measvnul M measures S M = 0
48 46 47 sylan9eqr M measures S B = A B M B = 0
49 1 48 sylan M measures S A S B S B A B = A B M B = 0
50 49 orcd M measures S A S B S B A B = A B M B = 0 M B = +∞
51 50 ex M measures S A S B S B A B = A B M B = 0 M B = +∞
52 36 38 2 7 40 42 51 esumpr2 M measures S A S B S B A * x B A B M x = M B + 𝑒 M A B
53 27 34 52 3eqtr3d M measures S A S B S B A M A = M B + 𝑒 M A B