Metamath Proof Explorer


Theorem esumpr2

Description: Extended sum over a pair, with a relaxed condition compared to esumpr . (Contributed by Thierry Arnoux, 2-Jan-2017)

Ref Expression
Hypotheses esumpr.1 φ k = A C = D
esumpr.2 φ k = B C = E
esumpr.3 φ A V
esumpr.4 φ B W
esumpr.5 φ D 0 +∞
esumpr.6 φ E 0 +∞
esumpr2.1 φ A = B D = 0 D = +∞
Assertion esumpr2 φ * k A B C = D + 𝑒 E

Proof

Step Hyp Ref Expression
1 esumpr.1 φ k = A C = D
2 esumpr.2 φ k = B C = E
3 esumpr.3 φ A V
4 esumpr.4 φ B W
5 esumpr.5 φ D 0 +∞
6 esumpr.6 φ E 0 +∞
7 esumpr2.1 φ A = B D = 0 D = +∞
8 simpr φ A = B A = B
9 dfsn2 A = A A
10 preq2 A = B A A = A B
11 9 10 eqtr2id A = B A B = A
12 esumeq1 A B = A * k A B C = * k A C
13 8 11 12 3syl φ A = B * k A B C = * k A C
14 1 3 5 esumsn φ * k A C = D
15 14 adantr φ A = B * k A C = D
16 13 15 eqtrd φ A = B * k A B C = D
17 oveq2 D = 0 D + 𝑒 D = D + 𝑒 0
18 0xr 0 *
19 eleq1 D = 0 D * 0 *
20 18 19 mpbiri D = 0 D *
21 xaddid1 D * D + 𝑒 0 = D
22 20 21 syl D = 0 D + 𝑒 0 = D
23 17 22 eqtrd D = 0 D + 𝑒 D = D
24 pnfxr +∞ *
25 eleq1 D = +∞ D * +∞ *
26 24 25 mpbiri D = +∞ D *
27 pnfnemnf +∞ −∞
28 neeq1 D = +∞ D −∞ +∞ −∞
29 27 28 mpbiri D = +∞ D −∞
30 xaddpnf1 D * D −∞ D + 𝑒 +∞ = +∞
31 26 29 30 syl2anc D = +∞ D + 𝑒 +∞ = +∞
32 oveq2 D = +∞ D + 𝑒 D = D + 𝑒 +∞
33 id D = +∞ D = +∞
34 31 32 33 3eqtr4d D = +∞ D + 𝑒 D = D
35 23 34 jaoi D = 0 D = +∞ D + 𝑒 D = D
36 7 35 syl6 φ A = B D + 𝑒 D = D
37 36 imp φ A = B D + 𝑒 D = D
38 simpll φ A = B k = B φ
39 eqeq2 A = B k = A k = B
40 39 biimprd A = B k = B k = A
41 8 40 syl φ A = B k = B k = A
42 41 imp φ A = B k = B k = A
43 38 42 1 syl2anc φ A = B k = B C = D
44 4 adantr φ A = B B W
45 5 adantr φ A = B D 0 +∞
46 43 44 45 esumsn φ A = B * k B C = D
47 2 4 6 esumsn φ * k B C = E
48 47 adantr φ A = B * k B C = E
49 46 48 eqtr3d φ A = B D = E
50 49 oveq2d φ A = B D + 𝑒 D = D + 𝑒 E
51 16 37 50 3eqtr2d φ A = B * k A B C = D + 𝑒 E
52 1 adantlr φ A B k = A C = D
53 2 adantlr φ A B k = B C = E
54 3 adantr φ A B A V
55 4 adantr φ A B B W
56 5 adantr φ A B D 0 +∞
57 6 adantr φ A B E 0 +∞
58 simpr φ A B A B
59 52 53 54 55 56 57 58 esumpr φ A B * k A B C = D + 𝑒 E
60 51 59 pm2.61dane φ * k A B C = D + 𝑒 E