Step |
Hyp |
Ref |
Expression |
1 |
|
esumpr.1 |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐶 = 𝐷 ) |
2 |
|
esumpr.2 |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐶 = 𝐸 ) |
3 |
|
esumpr.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
esumpr.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
5 |
|
esumpr.5 |
⊢ ( 𝜑 → 𝐷 ∈ ( 0 [,] +∞ ) ) |
6 |
|
esumpr.6 |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 [,] +∞ ) ) |
7 |
|
esumpr2.1 |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 → ( 𝐷 = 0 ∨ 𝐷 = +∞ ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
9 |
|
dfsn2 |
⊢ { 𝐴 } = { 𝐴 , 𝐴 } |
10 |
|
preq2 |
⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐴 } = { 𝐴 , 𝐵 } ) |
11 |
9 10
|
eqtr2id |
⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } = { 𝐴 } ) |
12 |
|
esumeq1 |
⊢ ( { 𝐴 , 𝐵 } = { 𝐴 } → Σ* 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = Σ* 𝑘 ∈ { 𝐴 } 𝐶 ) |
13 |
8 11 12
|
3syl |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → Σ* 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = Σ* 𝑘 ∈ { 𝐴 } 𝐶 ) |
14 |
1 3 5
|
esumsn |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → Σ* 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 ) |
16 |
13 15
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → Σ* 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = 𝐷 ) |
17 |
|
oveq2 |
⊢ ( 𝐷 = 0 → ( 𝐷 +𝑒 𝐷 ) = ( 𝐷 +𝑒 0 ) ) |
18 |
|
0xr |
⊢ 0 ∈ ℝ* |
19 |
|
eleq1 |
⊢ ( 𝐷 = 0 → ( 𝐷 ∈ ℝ* ↔ 0 ∈ ℝ* ) ) |
20 |
18 19
|
mpbiri |
⊢ ( 𝐷 = 0 → 𝐷 ∈ ℝ* ) |
21 |
|
xaddid1 |
⊢ ( 𝐷 ∈ ℝ* → ( 𝐷 +𝑒 0 ) = 𝐷 ) |
22 |
20 21
|
syl |
⊢ ( 𝐷 = 0 → ( 𝐷 +𝑒 0 ) = 𝐷 ) |
23 |
17 22
|
eqtrd |
⊢ ( 𝐷 = 0 → ( 𝐷 +𝑒 𝐷 ) = 𝐷 ) |
24 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
25 |
|
eleq1 |
⊢ ( 𝐷 = +∞ → ( 𝐷 ∈ ℝ* ↔ +∞ ∈ ℝ* ) ) |
26 |
24 25
|
mpbiri |
⊢ ( 𝐷 = +∞ → 𝐷 ∈ ℝ* ) |
27 |
|
pnfnemnf |
⊢ +∞ ≠ -∞ |
28 |
|
neeq1 |
⊢ ( 𝐷 = +∞ → ( 𝐷 ≠ -∞ ↔ +∞ ≠ -∞ ) ) |
29 |
27 28
|
mpbiri |
⊢ ( 𝐷 = +∞ → 𝐷 ≠ -∞ ) |
30 |
|
xaddpnf1 |
⊢ ( ( 𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞ ) → ( 𝐷 +𝑒 +∞ ) = +∞ ) |
31 |
26 29 30
|
syl2anc |
⊢ ( 𝐷 = +∞ → ( 𝐷 +𝑒 +∞ ) = +∞ ) |
32 |
|
oveq2 |
⊢ ( 𝐷 = +∞ → ( 𝐷 +𝑒 𝐷 ) = ( 𝐷 +𝑒 +∞ ) ) |
33 |
|
id |
⊢ ( 𝐷 = +∞ → 𝐷 = +∞ ) |
34 |
31 32 33
|
3eqtr4d |
⊢ ( 𝐷 = +∞ → ( 𝐷 +𝑒 𝐷 ) = 𝐷 ) |
35 |
23 34
|
jaoi |
⊢ ( ( 𝐷 = 0 ∨ 𝐷 = +∞ ) → ( 𝐷 +𝑒 𝐷 ) = 𝐷 ) |
36 |
7 35
|
syl6 |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 → ( 𝐷 +𝑒 𝐷 ) = 𝐷 ) ) |
37 |
36
|
imp |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐷 +𝑒 𝐷 ) = 𝐷 ) |
38 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑘 = 𝐵 ) → 𝜑 ) |
39 |
|
eqeq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑘 = 𝐴 ↔ 𝑘 = 𝐵 ) ) |
40 |
39
|
biimprd |
⊢ ( 𝐴 = 𝐵 → ( 𝑘 = 𝐵 → 𝑘 = 𝐴 ) ) |
41 |
8 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝑘 = 𝐵 → 𝑘 = 𝐴 ) ) |
42 |
41
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑘 = 𝐵 ) → 𝑘 = 𝐴 ) |
43 |
38 42 1
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 = 𝐵 ) ∧ 𝑘 = 𝐵 ) → 𝐶 = 𝐷 ) |
44 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ 𝑊 ) |
45 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
46 |
43 44 45
|
esumsn |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → Σ* 𝑘 ∈ { 𝐵 } 𝐶 = 𝐷 ) |
47 |
2 4 6
|
esumsn |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → Σ* 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 ) |
49 |
46 48
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐷 = 𝐸 ) |
50 |
49
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝐷 +𝑒 𝐷 ) = ( 𝐷 +𝑒 𝐸 ) ) |
51 |
16 37 50
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → Σ* 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 +𝑒 𝐸 ) ) |
52 |
1
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑘 = 𝐴 ) → 𝐶 = 𝐷 ) |
53 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑘 = 𝐵 ) → 𝐶 = 𝐸 ) |
54 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑉 ) |
55 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑊 ) |
56 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
57 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐸 ∈ ( 0 [,] +∞ ) ) |
58 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
59 |
52 53 54 55 56 57 58
|
esumpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → Σ* 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 +𝑒 𝐸 ) ) |
60 |
51 59
|
pm2.61dane |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 +𝑒 𝐸 ) ) |