Metamath Proof Explorer


Theorem esumsn

Description: The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017) (Shortened by Thierry Arnoux, 2-May-2020.)

Ref Expression
Hypotheses esumsn.1 ( ( 𝜑𝑘 = 𝑀 ) → 𝐴 = 𝐵 )
esumsn.2 ( 𝜑𝑀𝑉 )
esumsn.3 ( 𝜑𝐵 ∈ ( 0 [,] +∞ ) )
Assertion esumsn ( 𝜑 → Σ* 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 esumsn.1 ( ( 𝜑𝑘 = 𝑀 ) → 𝐴 = 𝐵 )
2 esumsn.2 ( 𝜑𝑀𝑉 )
3 esumsn.3 ( 𝜑𝐵 ∈ ( 0 [,] +∞ ) )
4 nfcv 𝑘 𝐵
5 4 1 2 3 esumsnf ( 𝜑 → Σ* 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 )