Metamath Proof Explorer
Description: The extended sum of a singleton is the term. (Contributed by Thierry
Arnoux, 2-Jan-2017) (Shortened by Thierry Arnoux, 2-May-2020.)
|
|
Ref |
Expression |
|
Hypotheses |
esumsn.1 |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐵 ) |
|
|
esumsn.2 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) |
|
|
esumsn.3 |
⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] +∞ ) ) |
|
Assertion |
esumsn |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
esumsn.1 |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐵 ) |
2 |
|
esumsn.2 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) |
3 |
|
esumsn.3 |
⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] +∞ ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐵 |
5 |
4 1 2 3
|
esumsnf |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 ) |