Description: The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017) (Shortened by Thierry Arnoux, 2-May-2020.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumsn.1 | |- ( ( ph /\ k = M ) -> A = B ) |
|
esumsn.2 | |- ( ph -> M e. V ) |
||
esumsn.3 | |- ( ph -> B e. ( 0 [,] +oo ) ) |
||
Assertion | esumsn | |- ( ph -> sum* k e. { M } A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumsn.1 | |- ( ( ph /\ k = M ) -> A = B ) |
|
2 | esumsn.2 | |- ( ph -> M e. V ) |
|
3 | esumsn.3 | |- ( ph -> B e. ( 0 [,] +oo ) ) |
|
4 | nfcv | |- F/_ k B |
|
5 | 4 1 2 3 | esumsnf | |- ( ph -> sum* k e. { M } A = B ) |