Metamath Proof Explorer


Theorem esumsn

Description: The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017) (Shortened by Thierry Arnoux, 2-May-2020.)

Ref Expression
Hypotheses esumsn.1
|- ( ( ph /\ k = M ) -> A = B )
esumsn.2
|- ( ph -> M e. V )
esumsn.3
|- ( ph -> B e. ( 0 [,] +oo ) )
Assertion esumsn
|- ( ph -> sum* k e. { M } A = B )

Proof

Step Hyp Ref Expression
1 esumsn.1
 |-  ( ( ph /\ k = M ) -> A = B )
2 esumsn.2
 |-  ( ph -> M e. V )
3 esumsn.3
 |-  ( ph -> B e. ( 0 [,] +oo ) )
4 nfcv
 |-  F/_ k B
5 4 1 2 3 esumsnf
 |-  ( ph -> sum* k e. { M } A = B )