Metamath Proof Explorer


Theorem esumsn

Description: The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017) (Shortened by Thierry Arnoux, 2-May-2020.)

Ref Expression
Hypotheses esumsn.1 φk=MA=B
esumsn.2 φMV
esumsn.3 φB0+∞
Assertion esumsn φ*kMA=B

Proof

Step Hyp Ref Expression
1 esumsn.1 φk=MA=B
2 esumsn.2 φMV
3 esumsn.3 φB0+∞
4 nfcv _kB
5 4 1 2 3 esumsnf φ*kMA=B