Metamath Proof Explorer


Theorem esumpr

Description: Extended sum over a pair. (Contributed by Thierry Arnoux, 2-Jan-2017)

Ref Expression
Hypotheses esumpr.1 φ k = A C = D
esumpr.2 φ k = B C = E
esumpr.3 φ A V
esumpr.4 φ B W
esumpr.5 φ D 0 +∞
esumpr.6 φ E 0 +∞
esumpr.7 φ A B
Assertion esumpr φ * k A B C = D + 𝑒 E

Proof

Step Hyp Ref Expression
1 esumpr.1 φ k = A C = D
2 esumpr.2 φ k = B C = E
3 esumpr.3 φ A V
4 esumpr.4 φ B W
5 esumpr.5 φ D 0 +∞
6 esumpr.6 φ E 0 +∞
7 esumpr.7 φ A B
8 df-pr A B = A B
9 esumeq1 A B = A B * k A B C = * k A B C
10 8 9 mp1i φ * k A B C = * k A B C
11 nfv k φ
12 nfcv _ k A
13 nfcv _ k B
14 snex A V
15 14 a1i φ A V
16 snex B V
17 16 a1i φ B V
18 disjsn2 A B A B =
19 7 18 syl φ A B =
20 elsni k A k = A
21 20 1 sylan2 φ k A C = D
22 5 adantr φ k A D 0 +∞
23 21 22 eqeltrd φ k A C 0 +∞
24 elsni k B k = B
25 24 2 sylan2 φ k B C = E
26 6 adantr φ k B E 0 +∞
27 25 26 eqeltrd φ k B C 0 +∞
28 11 12 13 15 17 19 23 27 esumsplit φ * k A B C = * k A C + 𝑒 * k B C
29 1 3 5 esumsn φ * k A C = D
30 2 4 6 esumsn φ * k B C = E
31 29 30 oveq12d φ * k A C + 𝑒 * k B C = D + 𝑒 E
32 10 28 31 3eqtrd φ * k A B C = D + 𝑒 E