Step |
Hyp |
Ref |
Expression |
1 |
|
esumpr.1 |
|- ( ( ph /\ k = A ) -> C = D ) |
2 |
|
esumpr.2 |
|- ( ( ph /\ k = B ) -> C = E ) |
3 |
|
esumpr.3 |
|- ( ph -> A e. V ) |
4 |
|
esumpr.4 |
|- ( ph -> B e. W ) |
5 |
|
esumpr.5 |
|- ( ph -> D e. ( 0 [,] +oo ) ) |
6 |
|
esumpr.6 |
|- ( ph -> E e. ( 0 [,] +oo ) ) |
7 |
|
esumpr.7 |
|- ( ph -> A =/= B ) |
8 |
|
df-pr |
|- { A , B } = ( { A } u. { B } ) |
9 |
|
esumeq1 |
|- ( { A , B } = ( { A } u. { B } ) -> sum* k e. { A , B } C = sum* k e. ( { A } u. { B } ) C ) |
10 |
8 9
|
mp1i |
|- ( ph -> sum* k e. { A , B } C = sum* k e. ( { A } u. { B } ) C ) |
11 |
|
nfv |
|- F/ k ph |
12 |
|
nfcv |
|- F/_ k { A } |
13 |
|
nfcv |
|- F/_ k { B } |
14 |
|
snex |
|- { A } e. _V |
15 |
14
|
a1i |
|- ( ph -> { A } e. _V ) |
16 |
|
snex |
|- { B } e. _V |
17 |
16
|
a1i |
|- ( ph -> { B } e. _V ) |
18 |
|
disjsn2 |
|- ( A =/= B -> ( { A } i^i { B } ) = (/) ) |
19 |
7 18
|
syl |
|- ( ph -> ( { A } i^i { B } ) = (/) ) |
20 |
|
elsni |
|- ( k e. { A } -> k = A ) |
21 |
20 1
|
sylan2 |
|- ( ( ph /\ k e. { A } ) -> C = D ) |
22 |
5
|
adantr |
|- ( ( ph /\ k e. { A } ) -> D e. ( 0 [,] +oo ) ) |
23 |
21 22
|
eqeltrd |
|- ( ( ph /\ k e. { A } ) -> C e. ( 0 [,] +oo ) ) |
24 |
|
elsni |
|- ( k e. { B } -> k = B ) |
25 |
24 2
|
sylan2 |
|- ( ( ph /\ k e. { B } ) -> C = E ) |
26 |
6
|
adantr |
|- ( ( ph /\ k e. { B } ) -> E e. ( 0 [,] +oo ) ) |
27 |
25 26
|
eqeltrd |
|- ( ( ph /\ k e. { B } ) -> C e. ( 0 [,] +oo ) ) |
28 |
11 12 13 15 17 19 23 27
|
esumsplit |
|- ( ph -> sum* k e. ( { A } u. { B } ) C = ( sum* k e. { A } C +e sum* k e. { B } C ) ) |
29 |
1 3 5
|
esumsn |
|- ( ph -> sum* k e. { A } C = D ) |
30 |
2 4 6
|
esumsn |
|- ( ph -> sum* k e. { B } C = E ) |
31 |
29 30
|
oveq12d |
|- ( ph -> ( sum* k e. { A } C +e sum* k e. { B } C ) = ( D +e E ) ) |
32 |
10 28 31
|
3eqtrd |
|- ( ph -> sum* k e. { A , B } C = ( D +e E ) ) |