Step |
Hyp |
Ref |
Expression |
1 |
|
esumpr.1 |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐶 = 𝐷 ) |
2 |
|
esumpr.2 |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐶 = 𝐸 ) |
3 |
|
esumpr.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
4 |
|
esumpr.4 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
5 |
|
esumpr.5 |
⊢ ( 𝜑 → 𝐷 ∈ ( 0 [,] +∞ ) ) |
6 |
|
esumpr.6 |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 [,] +∞ ) ) |
7 |
|
esumpr.7 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
8 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
9 |
|
esumeq1 |
⊢ ( { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) → Σ* 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = Σ* 𝑘 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝐶 ) |
10 |
8 9
|
mp1i |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = Σ* 𝑘 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝐶 ) |
11 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
12 |
|
nfcv |
⊢ Ⅎ 𝑘 { 𝐴 } |
13 |
|
nfcv |
⊢ Ⅎ 𝑘 { 𝐵 } |
14 |
|
snex |
⊢ { 𝐴 } ∈ V |
15 |
14
|
a1i |
⊢ ( 𝜑 → { 𝐴 } ∈ V ) |
16 |
|
snex |
⊢ { 𝐵 } ∈ V |
17 |
16
|
a1i |
⊢ ( 𝜑 → { 𝐵 } ∈ V ) |
18 |
|
disjsn2 |
⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
19 |
7 18
|
syl |
⊢ ( 𝜑 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
20 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝐴 } → 𝑘 = 𝐴 ) |
21 |
20 1
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 } ) → 𝐶 = 𝐷 ) |
22 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 } ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
23 |
21 22
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 } ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
24 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝐵 } → 𝑘 = 𝐵 ) |
25 |
24 2
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐵 } ) → 𝐶 = 𝐸 ) |
26 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐵 } ) → 𝐸 ∈ ( 0 [,] +∞ ) ) |
27 |
25 26
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐵 } ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
28 |
11 12 13 15 17 19 23 27
|
esumsplit |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝐶 = ( Σ* 𝑘 ∈ { 𝐴 } 𝐶 +𝑒 Σ* 𝑘 ∈ { 𝐵 } 𝐶 ) ) |
29 |
1 3 5
|
esumsn |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 ) |
30 |
2 4 6
|
esumsn |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 ) |
31 |
29 30
|
oveq12d |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ { 𝐴 } 𝐶 +𝑒 Σ* 𝑘 ∈ { 𝐵 } 𝐶 ) = ( 𝐷 +𝑒 𝐸 ) ) |
32 |
10 28 31
|
3eqtrd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 +𝑒 𝐸 ) ) |