Metamath Proof Explorer


Theorem esumpr

Description: Extended sum over a pair. (Contributed by Thierry Arnoux, 2-Jan-2017)

Ref Expression
Hypotheses esumpr.1 ( ( 𝜑𝑘 = 𝐴 ) → 𝐶 = 𝐷 )
esumpr.2 ( ( 𝜑𝑘 = 𝐵 ) → 𝐶 = 𝐸 )
esumpr.3 ( 𝜑𝐴𝑉 )
esumpr.4 ( 𝜑𝐵𝑊 )
esumpr.5 ( 𝜑𝐷 ∈ ( 0 [,] +∞ ) )
esumpr.6 ( 𝜑𝐸 ∈ ( 0 [,] +∞ ) )
esumpr.7 ( 𝜑𝐴𝐵 )
Assertion esumpr ( 𝜑 → Σ* 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 +𝑒 𝐸 ) )

Proof

Step Hyp Ref Expression
1 esumpr.1 ( ( 𝜑𝑘 = 𝐴 ) → 𝐶 = 𝐷 )
2 esumpr.2 ( ( 𝜑𝑘 = 𝐵 ) → 𝐶 = 𝐸 )
3 esumpr.3 ( 𝜑𝐴𝑉 )
4 esumpr.4 ( 𝜑𝐵𝑊 )
5 esumpr.5 ( 𝜑𝐷 ∈ ( 0 [,] +∞ ) )
6 esumpr.6 ( 𝜑𝐸 ∈ ( 0 [,] +∞ ) )
7 esumpr.7 ( 𝜑𝐴𝐵 )
8 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
9 esumeq1 ( { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) → Σ* 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = Σ* 𝑘 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝐶 )
10 8 9 mp1i ( 𝜑 → Σ* 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = Σ* 𝑘 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝐶 )
11 nfv 𝑘 𝜑
12 nfcv 𝑘 { 𝐴 }
13 nfcv 𝑘 { 𝐵 }
14 snex { 𝐴 } ∈ V
15 14 a1i ( 𝜑 → { 𝐴 } ∈ V )
16 snex { 𝐵 } ∈ V
17 16 a1i ( 𝜑 → { 𝐵 } ∈ V )
18 disjsn2 ( 𝐴𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ )
19 7 18 syl ( 𝜑 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ )
20 elsni ( 𝑘 ∈ { 𝐴 } → 𝑘 = 𝐴 )
21 20 1 sylan2 ( ( 𝜑𝑘 ∈ { 𝐴 } ) → 𝐶 = 𝐷 )
22 5 adantr ( ( 𝜑𝑘 ∈ { 𝐴 } ) → 𝐷 ∈ ( 0 [,] +∞ ) )
23 21 22 eqeltrd ( ( 𝜑𝑘 ∈ { 𝐴 } ) → 𝐶 ∈ ( 0 [,] +∞ ) )
24 elsni ( 𝑘 ∈ { 𝐵 } → 𝑘 = 𝐵 )
25 24 2 sylan2 ( ( 𝜑𝑘 ∈ { 𝐵 } ) → 𝐶 = 𝐸 )
26 6 adantr ( ( 𝜑𝑘 ∈ { 𝐵 } ) → 𝐸 ∈ ( 0 [,] +∞ ) )
27 25 26 eqeltrd ( ( 𝜑𝑘 ∈ { 𝐵 } ) → 𝐶 ∈ ( 0 [,] +∞ ) )
28 11 12 13 15 17 19 23 27 esumsplit ( 𝜑 → Σ* 𝑘 ∈ ( { 𝐴 } ∪ { 𝐵 } ) 𝐶 = ( Σ* 𝑘 ∈ { 𝐴 } 𝐶 +𝑒 Σ* 𝑘 ∈ { 𝐵 } 𝐶 ) )
29 1 3 5 esumsn ( 𝜑 → Σ* 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 )
30 2 4 6 esumsn ( 𝜑 → Σ* 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 )
31 29 30 oveq12d ( 𝜑 → ( Σ* 𝑘 ∈ { 𝐴 } 𝐶 +𝑒 Σ* 𝑘 ∈ { 𝐵 } 𝐶 ) = ( 𝐷 +𝑒 𝐸 ) )
32 10 28 31 3eqtrd ( 𝜑 → Σ* 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 +𝑒 𝐸 ) )