Step |
Hyp |
Ref |
Expression |
1 |
|
esumpr.1 |
|- ( ( ph /\ k = A ) -> C = D ) |
2 |
|
esumpr.2 |
|- ( ( ph /\ k = B ) -> C = E ) |
3 |
|
esumpr.3 |
|- ( ph -> A e. V ) |
4 |
|
esumpr.4 |
|- ( ph -> B e. W ) |
5 |
|
esumpr.5 |
|- ( ph -> D e. ( 0 [,] +oo ) ) |
6 |
|
esumpr.6 |
|- ( ph -> E e. ( 0 [,] +oo ) ) |
7 |
|
esumpr2.1 |
|- ( ph -> ( A = B -> ( D = 0 \/ D = +oo ) ) ) |
8 |
|
simpr |
|- ( ( ph /\ A = B ) -> A = B ) |
9 |
|
dfsn2 |
|- { A } = { A , A } |
10 |
|
preq2 |
|- ( A = B -> { A , A } = { A , B } ) |
11 |
9 10
|
eqtr2id |
|- ( A = B -> { A , B } = { A } ) |
12 |
|
esumeq1 |
|- ( { A , B } = { A } -> sum* k e. { A , B } C = sum* k e. { A } C ) |
13 |
8 11 12
|
3syl |
|- ( ( ph /\ A = B ) -> sum* k e. { A , B } C = sum* k e. { A } C ) |
14 |
1 3 5
|
esumsn |
|- ( ph -> sum* k e. { A } C = D ) |
15 |
14
|
adantr |
|- ( ( ph /\ A = B ) -> sum* k e. { A } C = D ) |
16 |
13 15
|
eqtrd |
|- ( ( ph /\ A = B ) -> sum* k e. { A , B } C = D ) |
17 |
|
oveq2 |
|- ( D = 0 -> ( D +e D ) = ( D +e 0 ) ) |
18 |
|
0xr |
|- 0 e. RR* |
19 |
|
eleq1 |
|- ( D = 0 -> ( D e. RR* <-> 0 e. RR* ) ) |
20 |
18 19
|
mpbiri |
|- ( D = 0 -> D e. RR* ) |
21 |
|
xaddid1 |
|- ( D e. RR* -> ( D +e 0 ) = D ) |
22 |
20 21
|
syl |
|- ( D = 0 -> ( D +e 0 ) = D ) |
23 |
17 22
|
eqtrd |
|- ( D = 0 -> ( D +e D ) = D ) |
24 |
|
pnfxr |
|- +oo e. RR* |
25 |
|
eleq1 |
|- ( D = +oo -> ( D e. RR* <-> +oo e. RR* ) ) |
26 |
24 25
|
mpbiri |
|- ( D = +oo -> D e. RR* ) |
27 |
|
pnfnemnf |
|- +oo =/= -oo |
28 |
|
neeq1 |
|- ( D = +oo -> ( D =/= -oo <-> +oo =/= -oo ) ) |
29 |
27 28
|
mpbiri |
|- ( D = +oo -> D =/= -oo ) |
30 |
|
xaddpnf1 |
|- ( ( D e. RR* /\ D =/= -oo ) -> ( D +e +oo ) = +oo ) |
31 |
26 29 30
|
syl2anc |
|- ( D = +oo -> ( D +e +oo ) = +oo ) |
32 |
|
oveq2 |
|- ( D = +oo -> ( D +e D ) = ( D +e +oo ) ) |
33 |
|
id |
|- ( D = +oo -> D = +oo ) |
34 |
31 32 33
|
3eqtr4d |
|- ( D = +oo -> ( D +e D ) = D ) |
35 |
23 34
|
jaoi |
|- ( ( D = 0 \/ D = +oo ) -> ( D +e D ) = D ) |
36 |
7 35
|
syl6 |
|- ( ph -> ( A = B -> ( D +e D ) = D ) ) |
37 |
36
|
imp |
|- ( ( ph /\ A = B ) -> ( D +e D ) = D ) |
38 |
|
simpll |
|- ( ( ( ph /\ A = B ) /\ k = B ) -> ph ) |
39 |
|
eqeq2 |
|- ( A = B -> ( k = A <-> k = B ) ) |
40 |
39
|
biimprd |
|- ( A = B -> ( k = B -> k = A ) ) |
41 |
8 40
|
syl |
|- ( ( ph /\ A = B ) -> ( k = B -> k = A ) ) |
42 |
41
|
imp |
|- ( ( ( ph /\ A = B ) /\ k = B ) -> k = A ) |
43 |
38 42 1
|
syl2anc |
|- ( ( ( ph /\ A = B ) /\ k = B ) -> C = D ) |
44 |
4
|
adantr |
|- ( ( ph /\ A = B ) -> B e. W ) |
45 |
5
|
adantr |
|- ( ( ph /\ A = B ) -> D e. ( 0 [,] +oo ) ) |
46 |
43 44 45
|
esumsn |
|- ( ( ph /\ A = B ) -> sum* k e. { B } C = D ) |
47 |
2 4 6
|
esumsn |
|- ( ph -> sum* k e. { B } C = E ) |
48 |
47
|
adantr |
|- ( ( ph /\ A = B ) -> sum* k e. { B } C = E ) |
49 |
46 48
|
eqtr3d |
|- ( ( ph /\ A = B ) -> D = E ) |
50 |
49
|
oveq2d |
|- ( ( ph /\ A = B ) -> ( D +e D ) = ( D +e E ) ) |
51 |
16 37 50
|
3eqtr2d |
|- ( ( ph /\ A = B ) -> sum* k e. { A , B } C = ( D +e E ) ) |
52 |
1
|
adantlr |
|- ( ( ( ph /\ A =/= B ) /\ k = A ) -> C = D ) |
53 |
2
|
adantlr |
|- ( ( ( ph /\ A =/= B ) /\ k = B ) -> C = E ) |
54 |
3
|
adantr |
|- ( ( ph /\ A =/= B ) -> A e. V ) |
55 |
4
|
adantr |
|- ( ( ph /\ A =/= B ) -> B e. W ) |
56 |
5
|
adantr |
|- ( ( ph /\ A =/= B ) -> D e. ( 0 [,] +oo ) ) |
57 |
6
|
adantr |
|- ( ( ph /\ A =/= B ) -> E e. ( 0 [,] +oo ) ) |
58 |
|
simpr |
|- ( ( ph /\ A =/= B ) -> A =/= B ) |
59 |
52 53 54 55 56 57 58
|
esumpr |
|- ( ( ph /\ A =/= B ) -> sum* k e. { A , B } C = ( D +e E ) ) |
60 |
51 59
|
pm2.61dane |
|- ( ph -> sum* k e. { A , B } C = ( D +e E ) ) |