Metamath Proof Explorer


Theorem esumsnf

Description: The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017) (Revised by Thierry Arnoux, 2-May-2020)

Ref Expression
Hypotheses esumsnf.0 _ k B
esumsnf.1 φ k = M A = B
esumsnf.2 φ M V
esumsnf.3 φ B 0 +∞
Assertion esumsnf φ * k M A = B

Proof

Step Hyp Ref Expression
1 esumsnf.0 _ k B
2 esumsnf.1 φ k = M A = B
3 esumsnf.2 φ M V
4 esumsnf.3 φ B 0 +∞
5 df-esum * k M A = 𝑠 * 𝑠 0 +∞ tsums k M A
6 5 a1i φ * k M A = 𝑠 * 𝑠 0 +∞ tsums k M A
7 eqid 𝑠 * 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
8 snfi M Fin
9 8 a1i φ M Fin
10 elsni k M k = M
11 10 2 sylan2 φ k M A = B
12 11 mpteq2dva φ k M A = k M B
13 fmptsn M V B 0 +∞ M B = l M B
14 nfcv _ l B
15 eqidd k = l B = B
16 14 1 15 cbvmpt k M B = l M B
17 13 16 eqtr4di M V B 0 +∞ M B = k M B
18 3 4 17 syl2anc φ M B = k M B
19 12 18 eqtr4d φ k M A = M B
20 fsng M V B 0 +∞ k M A : M B k M A = M B
21 3 4 20 syl2anc φ k M A : M B k M A = M B
22 19 21 mpbird φ k M A : M B
23 4 snssd φ B 0 +∞
24 22 23 fssd φ k M A : M 0 +∞
25 xrltso < Or *
26 25 a1i φ < Or *
27 0xr 0 *
28 27 a1i φ 0 *
29 elxrge0 B 0 +∞ B * 0 B
30 4 29 sylib φ B * 0 B
31 30 simpld φ B *
32 suppr < Or * 0 * B * sup 0 B * < = if B < 0 0 B
33 26 28 31 32 syl3anc φ sup 0 B * < = if B < 0 0 B
34 0fin Fin
35 34 a1i φ Fin
36 reseq2 x = k M A x = k M A
37 res0 k M A =
38 36 37 eqtrdi x = k M A x =
39 38 oveq2d x = 𝑠 * 𝑠 0 +∞ k M A x = 𝑠 * 𝑠 0 +∞
40 xrge00 0 = 0 𝑠 * 𝑠 0 +∞
41 40 gsum0 𝑠 * 𝑠 0 +∞ = 0
42 39 41 eqtrdi x = 𝑠 * 𝑠 0 +∞ k M A x = 0
43 42 adantl φ x = 𝑠 * 𝑠 0 +∞ k M A x = 0
44 reseq2 x = M k M A x = k M A M
45 ssid M M
46 resmpt M M k M A M = k M A
47 45 46 ax-mp k M A M = k M A
48 44 47 eqtrdi x = M k M A x = k M A
49 48 oveq2d x = M 𝑠 * 𝑠 0 +∞ k M A x = 𝑠 * 𝑠 0 +∞ k M A
50 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
51 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
52 cmnmnd 𝑠 * 𝑠 0 +∞ CMnd 𝑠 * 𝑠 0 +∞ Mnd
53 51 52 ax-mp 𝑠 * 𝑠 0 +∞ Mnd
54 53 a1i φ 𝑠 * 𝑠 0 +∞ Mnd
55 nfv k φ
56 50 54 3 4 2 55 1 gsumsnfd φ 𝑠 * 𝑠 0 +∞ k M A = B
57 49 56 sylan9eqr φ x = M 𝑠 * 𝑠 0 +∞ k M A x = B
58 35 9 28 4 43 57 fmptpr φ 0 M B = x M 𝑠 * 𝑠 0 +∞ k M A x
59 pwsn 𝒫 M = M
60 prssi Fin M Fin M Fin
61 34 8 60 mp2an M Fin
62 59 61 eqsstri 𝒫 M Fin
63 df-ss 𝒫 M Fin 𝒫 M Fin = 𝒫 M
64 62 63 mpbi 𝒫 M Fin = 𝒫 M
65 64 59 eqtri 𝒫 M Fin = M
66 eqid 𝑠 * 𝑠 0 +∞ k M A x = 𝑠 * 𝑠 0 +∞ k M A x
67 65 66 mpteq12i x 𝒫 M Fin 𝑠 * 𝑠 0 +∞ k M A x = x M 𝑠 * 𝑠 0 +∞ k M A x
68 58 67 eqtr4di φ 0 M B = x 𝒫 M Fin 𝑠 * 𝑠 0 +∞ k M A x
69 68 rneqd φ ran 0 M B = ran x 𝒫 M Fin 𝑠 * 𝑠 0 +∞ k M A x
70 rnpropg Fin M Fin ran 0 M B = 0 B
71 35 9 70 syl2anc φ ran 0 M B = 0 B
72 69 71 eqtr3d φ ran x 𝒫 M Fin 𝑠 * 𝑠 0 +∞ k M A x = 0 B
73 72 supeq1d φ sup ran x 𝒫 M Fin 𝑠 * 𝑠 0 +∞ k M A x * < = sup 0 B * <
74 30 simprd φ 0 B
75 xrlenlt 0 * B * 0 B ¬ B < 0
76 28 31 75 syl2anc φ 0 B ¬ B < 0
77 74 76 mpbid φ ¬ B < 0
78 eqidd φ B = B
79 77 78 jca φ ¬ B < 0 B = B
80 79 olcd φ B < 0 B = 0 ¬ B < 0 B = B
81 eqif B = if B < 0 0 B B < 0 B = 0 ¬ B < 0 B = B
82 80 81 sylibr φ B = if B < 0 0 B
83 33 73 82 3eqtr4rd φ B = sup ran x 𝒫 M Fin 𝑠 * 𝑠 0 +∞ k M A x * <
84 7 9 24 83 xrge0tsmsd φ 𝑠 * 𝑠 0 +∞ tsums k M A = B
85 84 unieqd φ 𝑠 * 𝑠 0 +∞ tsums k M A = B
86 unisng B 0 +∞ B = B
87 4 86 syl φ B = B
88 6 85 87 3eqtrd φ * k M A = B