Step |
Hyp |
Ref |
Expression |
1 |
|
esumsnf.0 |
|- F/_ k B |
2 |
|
esumsnf.1 |
|- ( ( ph /\ k = M ) -> A = B ) |
3 |
|
esumsnf.2 |
|- ( ph -> M e. V ) |
4 |
|
esumsnf.3 |
|- ( ph -> B e. ( 0 [,] +oo ) ) |
5 |
|
df-esum |
|- sum* k e. { M } A = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. { M } |-> A ) ) |
6 |
5
|
a1i |
|- ( ph -> sum* k e. { M } A = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. { M } |-> A ) ) ) |
7 |
|
eqid |
|- ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
8 |
|
snfi |
|- { M } e. Fin |
9 |
8
|
a1i |
|- ( ph -> { M } e. Fin ) |
10 |
|
elsni |
|- ( k e. { M } -> k = M ) |
11 |
10 2
|
sylan2 |
|- ( ( ph /\ k e. { M } ) -> A = B ) |
12 |
11
|
mpteq2dva |
|- ( ph -> ( k e. { M } |-> A ) = ( k e. { M } |-> B ) ) |
13 |
|
fmptsn |
|- ( ( M e. V /\ B e. ( 0 [,] +oo ) ) -> { <. M , B >. } = ( l e. { M } |-> B ) ) |
14 |
|
nfcv |
|- F/_ l B |
15 |
|
eqidd |
|- ( k = l -> B = B ) |
16 |
14 1 15
|
cbvmpt |
|- ( k e. { M } |-> B ) = ( l e. { M } |-> B ) |
17 |
13 16
|
eqtr4di |
|- ( ( M e. V /\ B e. ( 0 [,] +oo ) ) -> { <. M , B >. } = ( k e. { M } |-> B ) ) |
18 |
3 4 17
|
syl2anc |
|- ( ph -> { <. M , B >. } = ( k e. { M } |-> B ) ) |
19 |
12 18
|
eqtr4d |
|- ( ph -> ( k e. { M } |-> A ) = { <. M , B >. } ) |
20 |
|
fsng |
|- ( ( M e. V /\ B e. ( 0 [,] +oo ) ) -> ( ( k e. { M } |-> A ) : { M } --> { B } <-> ( k e. { M } |-> A ) = { <. M , B >. } ) ) |
21 |
3 4 20
|
syl2anc |
|- ( ph -> ( ( k e. { M } |-> A ) : { M } --> { B } <-> ( k e. { M } |-> A ) = { <. M , B >. } ) ) |
22 |
19 21
|
mpbird |
|- ( ph -> ( k e. { M } |-> A ) : { M } --> { B } ) |
23 |
4
|
snssd |
|- ( ph -> { B } C_ ( 0 [,] +oo ) ) |
24 |
22 23
|
fssd |
|- ( ph -> ( k e. { M } |-> A ) : { M } --> ( 0 [,] +oo ) ) |
25 |
|
xrltso |
|- < Or RR* |
26 |
25
|
a1i |
|- ( ph -> < Or RR* ) |
27 |
|
0xr |
|- 0 e. RR* |
28 |
27
|
a1i |
|- ( ph -> 0 e. RR* ) |
29 |
|
elxrge0 |
|- ( B e. ( 0 [,] +oo ) <-> ( B e. RR* /\ 0 <_ B ) ) |
30 |
4 29
|
sylib |
|- ( ph -> ( B e. RR* /\ 0 <_ B ) ) |
31 |
30
|
simpld |
|- ( ph -> B e. RR* ) |
32 |
|
suppr |
|- ( ( < Or RR* /\ 0 e. RR* /\ B e. RR* ) -> sup ( { 0 , B } , RR* , < ) = if ( B < 0 , 0 , B ) ) |
33 |
26 28 31 32
|
syl3anc |
|- ( ph -> sup ( { 0 , B } , RR* , < ) = if ( B < 0 , 0 , B ) ) |
34 |
|
0fin |
|- (/) e. Fin |
35 |
34
|
a1i |
|- ( ph -> (/) e. Fin ) |
36 |
|
reseq2 |
|- ( x = (/) -> ( ( k e. { M } |-> A ) |` x ) = ( ( k e. { M } |-> A ) |` (/) ) ) |
37 |
|
res0 |
|- ( ( k e. { M } |-> A ) |` (/) ) = (/) |
38 |
36 37
|
eqtrdi |
|- ( x = (/) -> ( ( k e. { M } |-> A ) |` x ) = (/) ) |
39 |
38
|
oveq2d |
|- ( x = (/) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum (/) ) ) |
40 |
|
xrge00 |
|- 0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
41 |
40
|
gsum0 |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) gsum (/) ) = 0 |
42 |
39 41
|
eqtrdi |
|- ( x = (/) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) = 0 ) |
43 |
42
|
adantl |
|- ( ( ph /\ x = (/) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) = 0 ) |
44 |
|
reseq2 |
|- ( x = { M } -> ( ( k e. { M } |-> A ) |` x ) = ( ( k e. { M } |-> A ) |` { M } ) ) |
45 |
|
ssid |
|- { M } C_ { M } |
46 |
|
resmpt |
|- ( { M } C_ { M } -> ( ( k e. { M } |-> A ) |` { M } ) = ( k e. { M } |-> A ) ) |
47 |
45 46
|
ax-mp |
|- ( ( k e. { M } |-> A ) |` { M } ) = ( k e. { M } |-> A ) |
48 |
44 47
|
eqtrdi |
|- ( x = { M } -> ( ( k e. { M } |-> A ) |` x ) = ( k e. { M } |-> A ) ) |
49 |
48
|
oveq2d |
|- ( x = { M } -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. { M } |-> A ) ) ) |
50 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
51 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
52 |
|
cmnmnd |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) |
53 |
51 52
|
ax-mp |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd |
54 |
53
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) |
55 |
|
nfv |
|- F/ k ph |
56 |
50 54 3 4 2 55 1
|
gsumsnfd |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. { M } |-> A ) ) = B ) |
57 |
49 56
|
sylan9eqr |
|- ( ( ph /\ x = { M } ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) = B ) |
58 |
35 9 28 4 43 57
|
fmptpr |
|- ( ph -> { <. (/) , 0 >. , <. { M } , B >. } = ( x e. { (/) , { M } } |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) ) ) |
59 |
|
pwsn |
|- ~P { M } = { (/) , { M } } |
60 |
|
prssi |
|- ( ( (/) e. Fin /\ { M } e. Fin ) -> { (/) , { M } } C_ Fin ) |
61 |
34 8 60
|
mp2an |
|- { (/) , { M } } C_ Fin |
62 |
59 61
|
eqsstri |
|- ~P { M } C_ Fin |
63 |
|
df-ss |
|- ( ~P { M } C_ Fin <-> ( ~P { M } i^i Fin ) = ~P { M } ) |
64 |
62 63
|
mpbi |
|- ( ~P { M } i^i Fin ) = ~P { M } |
65 |
64 59
|
eqtri |
|- ( ~P { M } i^i Fin ) = { (/) , { M } } |
66 |
|
eqid |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) |
67 |
65 66
|
mpteq12i |
|- ( x e. ( ~P { M } i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) ) = ( x e. { (/) , { M } } |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) ) |
68 |
58 67
|
eqtr4di |
|- ( ph -> { <. (/) , 0 >. , <. { M } , B >. } = ( x e. ( ~P { M } i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) ) ) |
69 |
68
|
rneqd |
|- ( ph -> ran { <. (/) , 0 >. , <. { M } , B >. } = ran ( x e. ( ~P { M } i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) ) ) |
70 |
|
rnpropg |
|- ( ( (/) e. Fin /\ { M } e. Fin ) -> ran { <. (/) , 0 >. , <. { M } , B >. } = { 0 , B } ) |
71 |
35 9 70
|
syl2anc |
|- ( ph -> ran { <. (/) , 0 >. , <. { M } , B >. } = { 0 , B } ) |
72 |
69 71
|
eqtr3d |
|- ( ph -> ran ( x e. ( ~P { M } i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) ) = { 0 , B } ) |
73 |
72
|
supeq1d |
|- ( ph -> sup ( ran ( x e. ( ~P { M } i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) ) , RR* , < ) = sup ( { 0 , B } , RR* , < ) ) |
74 |
30
|
simprd |
|- ( ph -> 0 <_ B ) |
75 |
|
xrlenlt |
|- ( ( 0 e. RR* /\ B e. RR* ) -> ( 0 <_ B <-> -. B < 0 ) ) |
76 |
28 31 75
|
syl2anc |
|- ( ph -> ( 0 <_ B <-> -. B < 0 ) ) |
77 |
74 76
|
mpbid |
|- ( ph -> -. B < 0 ) |
78 |
|
eqidd |
|- ( ph -> B = B ) |
79 |
77 78
|
jca |
|- ( ph -> ( -. B < 0 /\ B = B ) ) |
80 |
79
|
olcd |
|- ( ph -> ( ( B < 0 /\ B = 0 ) \/ ( -. B < 0 /\ B = B ) ) ) |
81 |
|
eqif |
|- ( B = if ( B < 0 , 0 , B ) <-> ( ( B < 0 /\ B = 0 ) \/ ( -. B < 0 /\ B = B ) ) ) |
82 |
80 81
|
sylibr |
|- ( ph -> B = if ( B < 0 , 0 , B ) ) |
83 |
33 73 82
|
3eqtr4rd |
|- ( ph -> B = sup ( ran ( x e. ( ~P { M } i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( ( k e. { M } |-> A ) |` x ) ) ) , RR* , < ) ) |
84 |
7 9 24 83
|
xrge0tsmsd |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. { M } |-> A ) ) = { B } ) |
85 |
84
|
unieqd |
|- ( ph -> U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. { M } |-> A ) ) = U. { B } ) |
86 |
|
unisng |
|- ( B e. ( 0 [,] +oo ) -> U. { B } = B ) |
87 |
4 86
|
syl |
|- ( ph -> U. { B } = B ) |
88 |
6 85 87
|
3eqtrd |
|- ( ph -> sum* k e. { M } A = B ) |