Step |
Hyp |
Ref |
Expression |
1 |
|
esumsnf.0 |
⊢ Ⅎ 𝑘 𝐵 |
2 |
|
esumsnf.1 |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐵 ) |
3 |
|
esumsnf.2 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) |
4 |
|
esumsnf.3 |
⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] +∞ ) ) |
5 |
|
df-esum |
⊢ Σ* 𝑘 ∈ { 𝑀 } 𝐴 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝑀 } 𝐴 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) ) |
7 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
8 |
|
snfi |
⊢ { 𝑀 } ∈ Fin |
9 |
8
|
a1i |
⊢ ( 𝜑 → { 𝑀 } ∈ Fin ) |
10 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝑀 } → 𝑘 = 𝑀 ) |
11 |
10 2
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝐴 = 𝐵 ) |
12 |
11
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝐵 ) ) |
13 |
|
fmptsn |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → { 〈 𝑀 , 𝐵 〉 } = ( 𝑙 ∈ { 𝑀 } ↦ 𝐵 ) ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑙 𝐵 |
15 |
|
eqidd |
⊢ ( 𝑘 = 𝑙 → 𝐵 = 𝐵 ) |
16 |
14 1 15
|
cbvmpt |
⊢ ( 𝑘 ∈ { 𝑀 } ↦ 𝐵 ) = ( 𝑙 ∈ { 𝑀 } ↦ 𝐵 ) |
17 |
13 16
|
eqtr4di |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → { 〈 𝑀 , 𝐵 〉 } = ( 𝑘 ∈ { 𝑀 } ↦ 𝐵 ) ) |
18 |
3 4 17
|
syl2anc |
⊢ ( 𝜑 → { 〈 𝑀 , 𝐵 〉 } = ( 𝑘 ∈ { 𝑀 } ↦ 𝐵 ) ) |
19 |
12 18
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) = { 〈 𝑀 , 𝐵 〉 } ) |
20 |
|
fsng |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) : { 𝑀 } ⟶ { 𝐵 } ↔ ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) = { 〈 𝑀 , 𝐵 〉 } ) ) |
21 |
3 4 20
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) : { 𝑀 } ⟶ { 𝐵 } ↔ ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) = { 〈 𝑀 , 𝐵 〉 } ) ) |
22 |
19 21
|
mpbird |
⊢ ( 𝜑 → ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) : { 𝑀 } ⟶ { 𝐵 } ) |
23 |
4
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ ( 0 [,] +∞ ) ) |
24 |
22 23
|
fssd |
⊢ ( 𝜑 → ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) : { 𝑀 } ⟶ ( 0 [,] +∞ ) ) |
25 |
|
xrltso |
⊢ < Or ℝ* |
26 |
25
|
a1i |
⊢ ( 𝜑 → < Or ℝ* ) |
27 |
|
0xr |
⊢ 0 ∈ ℝ* |
28 |
27
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
29 |
|
elxrge0 |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) |
30 |
4 29
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) |
31 |
30
|
simpld |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
32 |
|
suppr |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → sup ( { 0 , 𝐵 } , ℝ* , < ) = if ( 𝐵 < 0 , 0 , 𝐵 ) ) |
33 |
26 28 31 32
|
syl3anc |
⊢ ( 𝜑 → sup ( { 0 , 𝐵 } , ℝ* , < ) = if ( 𝐵 < 0 , 0 , 𝐵 ) ) |
34 |
|
0fin |
⊢ ∅ ∈ Fin |
35 |
34
|
a1i |
⊢ ( 𝜑 → ∅ ∈ Fin ) |
36 |
|
reseq2 |
⊢ ( 𝑥 = ∅ → ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) = ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ ∅ ) ) |
37 |
|
res0 |
⊢ ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ ∅ ) = ∅ |
38 |
36 37
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) = ∅ ) |
39 |
38
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ∅ ) ) |
40 |
|
xrge00 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
41 |
40
|
gsum0 |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ∅ ) = 0 |
42 |
39 41
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) = 0 ) |
43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) = 0 ) |
44 |
|
reseq2 |
⊢ ( 𝑥 = { 𝑀 } → ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) = ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ { 𝑀 } ) ) |
45 |
|
ssid |
⊢ { 𝑀 } ⊆ { 𝑀 } |
46 |
|
resmpt |
⊢ ( { 𝑀 } ⊆ { 𝑀 } → ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ { 𝑀 } ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) |
47 |
45 46
|
ax-mp |
⊢ ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ { 𝑀 } ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) |
48 |
44 47
|
eqtrdi |
⊢ ( 𝑥 = { 𝑀 } → ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) |
49 |
48
|
oveq2d |
⊢ ( 𝑥 = { 𝑀 } → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) ) |
50 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
51 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
52 |
|
cmnmnd |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
53 |
51 52
|
ax-mp |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd |
54 |
53
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
55 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
56 |
50 54 3 4 2 55 1
|
gsumsnfd |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐵 ) |
57 |
49 56
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑥 = { 𝑀 } ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) = 𝐵 ) |
58 |
35 9 28 4 43 57
|
fmptpr |
⊢ ( 𝜑 → { 〈 ∅ , 0 〉 , 〈 { 𝑀 } , 𝐵 〉 } = ( 𝑥 ∈ { ∅ , { 𝑀 } } ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) ) ) |
59 |
|
pwsn |
⊢ 𝒫 { 𝑀 } = { ∅ , { 𝑀 } } |
60 |
|
prssi |
⊢ ( ( ∅ ∈ Fin ∧ { 𝑀 } ∈ Fin ) → { ∅ , { 𝑀 } } ⊆ Fin ) |
61 |
34 8 60
|
mp2an |
⊢ { ∅ , { 𝑀 } } ⊆ Fin |
62 |
59 61
|
eqsstri |
⊢ 𝒫 { 𝑀 } ⊆ Fin |
63 |
|
df-ss |
⊢ ( 𝒫 { 𝑀 } ⊆ Fin ↔ ( 𝒫 { 𝑀 } ∩ Fin ) = 𝒫 { 𝑀 } ) |
64 |
62 63
|
mpbi |
⊢ ( 𝒫 { 𝑀 } ∩ Fin ) = 𝒫 { 𝑀 } |
65 |
64 59
|
eqtri |
⊢ ( 𝒫 { 𝑀 } ∩ Fin ) = { ∅ , { 𝑀 } } |
66 |
|
eqid |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) |
67 |
65 66
|
mpteq12i |
⊢ ( 𝑥 ∈ ( 𝒫 { 𝑀 } ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) ) = ( 𝑥 ∈ { ∅ , { 𝑀 } } ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) ) |
68 |
58 67
|
eqtr4di |
⊢ ( 𝜑 → { 〈 ∅ , 0 〉 , 〈 { 𝑀 } , 𝐵 〉 } = ( 𝑥 ∈ ( 𝒫 { 𝑀 } ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) ) ) |
69 |
68
|
rneqd |
⊢ ( 𝜑 → ran { 〈 ∅ , 0 〉 , 〈 { 𝑀 } , 𝐵 〉 } = ran ( 𝑥 ∈ ( 𝒫 { 𝑀 } ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) ) ) |
70 |
|
rnpropg |
⊢ ( ( ∅ ∈ Fin ∧ { 𝑀 } ∈ Fin ) → ran { 〈 ∅ , 0 〉 , 〈 { 𝑀 } , 𝐵 〉 } = { 0 , 𝐵 } ) |
71 |
35 9 70
|
syl2anc |
⊢ ( 𝜑 → ran { 〈 ∅ , 0 〉 , 〈 { 𝑀 } , 𝐵 〉 } = { 0 , 𝐵 } ) |
72 |
69 71
|
eqtr3d |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 𝒫 { 𝑀 } ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) ) = { 0 , 𝐵 } ) |
73 |
72
|
supeq1d |
⊢ ( 𝜑 → sup ( ran ( 𝑥 ∈ ( 𝒫 { 𝑀 } ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) ) , ℝ* , < ) = sup ( { 0 , 𝐵 } , ℝ* , < ) ) |
74 |
30
|
simprd |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
75 |
|
xrlenlt |
⊢ ( ( 0 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 0 ≤ 𝐵 ↔ ¬ 𝐵 < 0 ) ) |
76 |
28 31 75
|
syl2anc |
⊢ ( 𝜑 → ( 0 ≤ 𝐵 ↔ ¬ 𝐵 < 0 ) ) |
77 |
74 76
|
mpbid |
⊢ ( 𝜑 → ¬ 𝐵 < 0 ) |
78 |
|
eqidd |
⊢ ( 𝜑 → 𝐵 = 𝐵 ) |
79 |
77 78
|
jca |
⊢ ( 𝜑 → ( ¬ 𝐵 < 0 ∧ 𝐵 = 𝐵 ) ) |
80 |
79
|
olcd |
⊢ ( 𝜑 → ( ( 𝐵 < 0 ∧ 𝐵 = 0 ) ∨ ( ¬ 𝐵 < 0 ∧ 𝐵 = 𝐵 ) ) ) |
81 |
|
eqif |
⊢ ( 𝐵 = if ( 𝐵 < 0 , 0 , 𝐵 ) ↔ ( ( 𝐵 < 0 ∧ 𝐵 = 0 ) ∨ ( ¬ 𝐵 < 0 ∧ 𝐵 = 𝐵 ) ) ) |
82 |
80 81
|
sylibr |
⊢ ( 𝜑 → 𝐵 = if ( 𝐵 < 0 , 0 , 𝐵 ) ) |
83 |
33 73 82
|
3eqtr4rd |
⊢ ( 𝜑 → 𝐵 = sup ( ran ( 𝑥 ∈ ( 𝒫 { 𝑀 } ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ↾ 𝑥 ) ) ) , ℝ* , < ) ) |
84 |
7 9 24 83
|
xrge0tsmsd |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = { 𝐵 } ) |
85 |
84
|
unieqd |
⊢ ( 𝜑 → ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = ∪ { 𝐵 } ) |
86 |
|
unisng |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) → ∪ { 𝐵 } = 𝐵 ) |
87 |
4 86
|
syl |
⊢ ( 𝜑 → ∪ { 𝐵 } = 𝐵 ) |
88 |
6 85 87
|
3eqtrd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝑀 } 𝐴 = 𝐵 ) |