| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sneq | 
							 |-  ( a = A -> { a } = { A } ) | 
						
						
							| 2 | 
							
								1
							 | 
							feq2d | 
							 |-  ( a = A -> ( F : { a } --> { b } <-> F : { A } --> { b } ) ) | 
						
						
							| 3 | 
							
								
							 | 
							opeq1 | 
							 |-  ( a = A -> <. a , b >. = <. A , b >. )  | 
						
						
							| 4 | 
							
								3
							 | 
							sneqd | 
							 |-  ( a = A -> { <. a , b >. } = { <. A , b >. } ) | 
						
						
							| 5 | 
							
								4
							 | 
							eqeq2d | 
							 |-  ( a = A -> ( F = { <. a , b >. } <-> F = { <. A , b >. } ) ) | 
						
						
							| 6 | 
							
								2 5
							 | 
							bibi12d | 
							 |-  ( a = A -> ( ( F : { a } --> { b } <-> F = { <. a , b >. } ) <-> ( F : { A } --> { b } <-> F = { <. A , b >. } ) ) ) | 
						
						
							| 7 | 
							
								
							 | 
							sneq | 
							 |-  ( b = B -> { b } = { B } ) | 
						
						
							| 8 | 
							
								7
							 | 
							feq3d | 
							 |-  ( b = B -> ( F : { A } --> { b } <-> F : { A } --> { B } ) ) | 
						
						
							| 9 | 
							
								
							 | 
							opeq2 | 
							 |-  ( b = B -> <. A , b >. = <. A , B >. )  | 
						
						
							| 10 | 
							
								9
							 | 
							sneqd | 
							 |-  ( b = B -> { <. A , b >. } = { <. A , B >. } ) | 
						
						
							| 11 | 
							
								10
							 | 
							eqeq2d | 
							 |-  ( b = B -> ( F = { <. A , b >. } <-> F = { <. A , B >. } ) ) | 
						
						
							| 12 | 
							
								8 11
							 | 
							bibi12d | 
							 |-  ( b = B -> ( ( F : { A } --> { b } <-> F = { <. A , b >. } ) <-> ( F : { A } --> { B } <-> F = { <. A , B >. } ) ) ) | 
						
						
							| 13 | 
							
								
							 | 
							vex | 
							 |-  a e. _V  | 
						
						
							| 14 | 
							
								
							 | 
							vex | 
							 |-  b e. _V  | 
						
						
							| 15 | 
							
								13 14
							 | 
							fsn | 
							 |-  ( F : { a } --> { b } <-> F = { <. a , b >. } ) | 
						
						
							| 16 | 
							
								6 12 15
							 | 
							vtocl2g | 
							 |-  ( ( A e. C /\ B e. D ) -> ( F : { A } --> { B } <-> F = { <. A , B >. } ) ) |