| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumrnmpt2.1 |
⊢ ( 𝑦 = 𝐵 → 𝐶 = 𝐷 ) |
| 2 |
|
esumrnmpt2.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
esumrnmpt2.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
| 4 |
|
esumrnmpt2.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
| 5 |
|
esumrnmpt2.5 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝐵 = ∅ ) → 𝐷 = 0 ) |
| 6 |
|
esumrnmpt2.6 |
⊢ ( 𝜑 → Disj 𝑘 ∈ 𝐴 𝐵 ) |
| 7 |
|
nfrab1 |
⊢ Ⅎ 𝑘 { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } |
| 8 |
|
ssrab2 |
⊢ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ⊆ 𝐴 |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ⊆ 𝐴 ) |
| 10 |
2 9
|
ssexd |
⊢ ( 𝜑 → { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ∈ V ) |
| 11 |
9
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) → 𝑘 ∈ 𝐴 ) |
| 12 |
11 3
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
| 13 |
11 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) → 𝐵 ∈ 𝑊 ) |
| 14 |
|
rabid |
⊢ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↔ ( 𝑘 ∈ 𝐴 ∧ ¬ 𝐵 = ∅ ) ) |
| 15 |
14
|
simprbi |
⊢ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } → ¬ 𝐵 = ∅ ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) → ¬ 𝐵 = ∅ ) |
| 17 |
|
elsng |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝐵 ∈ { ∅ } ↔ 𝐵 = ∅ ) ) |
| 18 |
13 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) → ( 𝐵 ∈ { ∅ } ↔ 𝐵 = ∅ ) ) |
| 19 |
16 18
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) → ¬ 𝐵 ∈ { ∅ } ) |
| 20 |
13 19
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) → 𝐵 ∈ ( 𝑊 ∖ { ∅ } ) ) |
| 21 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
| 22 |
7 21
|
disjss1f |
⊢ ( { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ⊆ 𝐴 → ( Disj 𝑘 ∈ 𝐴 𝐵 → Disj 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐵 ) ) |
| 23 |
9 6 22
|
sylc |
⊢ ( 𝜑 → Disj 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐵 ) |
| 24 |
7 1 10 12 20 23
|
esumrnmpt |
⊢ ( 𝜑 → Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ) |
| 25 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) |
| 26 |
|
snex |
⊢ { ∅ } ∈ V |
| 27 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) → { ∅ } ∈ V ) |
| 28 |
|
velsn |
⊢ ( 𝑦 ∈ { ∅ } ↔ 𝑦 = ∅ ) |
| 29 |
28
|
biimpi |
⊢ ( 𝑦 ∈ { ∅ } → 𝑦 = ∅ ) |
| 30 |
29
|
adantl |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) ∧ 𝑦 ∈ { ∅ } ) → 𝑦 = ∅ ) |
| 31 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 32 |
|
nfre1 |
⊢ Ⅎ 𝑘 ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ |
| 33 |
31 32
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) |
| 34 |
|
nfv |
⊢ Ⅎ 𝑘 𝑦 = ∅ |
| 35 |
33 34
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) ∧ 𝑦 = ∅ ) |
| 36 |
|
nfv |
⊢ Ⅎ 𝑘 𝐶 = 0 |
| 37 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) ∧ 𝑦 = ∅ ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝐵 = ∅ ) → 𝑦 = ∅ ) |
| 38 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) ∧ 𝑦 = ∅ ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) |
| 39 |
37 38
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) ∧ 𝑦 = ∅ ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝐵 = ∅ ) → 𝑦 = 𝐵 ) |
| 40 |
39 1
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) ∧ 𝑦 = ∅ ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝐵 = ∅ ) → 𝐶 = 𝐷 ) |
| 41 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) ∧ 𝑦 = ∅ ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝐵 = ∅ ) → 𝜑 ) |
| 42 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) ∧ 𝑦 = ∅ ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝐵 = ∅ ) → 𝑘 ∈ 𝐴 ) |
| 43 |
41 42 38 5
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) ∧ 𝑦 = ∅ ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝐵 = ∅ ) → 𝐷 = 0 ) |
| 44 |
40 43
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) ∧ 𝑦 = ∅ ) ∧ 𝑘 ∈ 𝐴 ) ∧ 𝐵 = ∅ ) → 𝐶 = 0 ) |
| 45 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) ∧ 𝑦 = ∅ ) → ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) |
| 46 |
35 36 44 45
|
r19.29af2 |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) ∧ 𝑦 = ∅ ) → 𝐶 = 0 ) |
| 47 |
30 46
|
syldan |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) ∧ 𝑦 ∈ { ∅ } ) → 𝐶 = 0 ) |
| 48 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
| 49 |
47 48
|
eqeltrdi |
⊢ ( ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) ∧ 𝑦 ∈ { ∅ } ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 50 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑦 |
| 51 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) |
| 52 |
51
|
nfrn |
⊢ Ⅎ 𝑘 ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) |
| 53 |
50 52
|
nfel |
⊢ Ⅎ 𝑘 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) |
| 54 |
31 53
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ) |
| 55 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
| 56 |
|
rabid |
⊢ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↔ ( 𝑘 ∈ 𝐴 ∧ 𝐵 = ∅ ) ) |
| 57 |
56
|
simprbi |
⊢ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } → 𝐵 = ∅ ) |
| 58 |
57
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) ∧ 𝑦 = 𝐵 ) → 𝐵 = ∅ ) |
| 59 |
55 58
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) ∧ 𝑦 = 𝐵 ) → 𝑦 = ∅ ) |
| 60 |
59 28
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) ∧ 𝑦 = 𝐵 ) → 𝑦 ∈ { ∅ } ) |
| 61 |
|
vex |
⊢ 𝑦 ∈ V |
| 62 |
|
eqid |
⊢ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) = ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) |
| 63 |
62
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ↔ ∃ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } 𝑦 = 𝐵 ) ) |
| 64 |
61 63
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ↔ ∃ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } 𝑦 = 𝐵 ) |
| 65 |
64
|
biimpi |
⊢ ( 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) → ∃ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } 𝑦 = 𝐵 ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ) → ∃ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } 𝑦 = 𝐵 ) |
| 67 |
54 60 66
|
r19.29af |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ) → 𝑦 ∈ { ∅ } ) |
| 68 |
67
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) → 𝑦 ∈ { ∅ } ) ) |
| 69 |
68
|
ssrdv |
⊢ ( 𝜑 → ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ⊆ { ∅ } ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) → ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ⊆ { ∅ } ) |
| 71 |
25 27 49 70
|
esummono |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) → Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ≤ Σ* 𝑦 ∈ { ∅ } 𝐶 ) |
| 72 |
|
0ex |
⊢ ∅ ∈ V |
| 73 |
72
|
a1i |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) → ∅ ∈ V ) |
| 74 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 75 |
46 73 74
|
esumsn |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) → Σ* 𝑦 ∈ { ∅ } 𝐶 = 0 ) |
| 76 |
71 75
|
breqtrd |
⊢ ( ( 𝜑 ∧ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) → Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ≤ 0 ) |
| 77 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) → ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) |
| 78 |
|
nfv |
⊢ Ⅎ 𝑦 ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ |
| 79 |
32
|
nfn |
⊢ Ⅎ 𝑘 ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ |
| 80 |
|
rabn0 |
⊢ ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ≠ ∅ ↔ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) |
| 81 |
80
|
biimpi |
⊢ ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ≠ ∅ → ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) |
| 82 |
81
|
necon1bi |
⊢ ( ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ → { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } = ∅ ) |
| 83 |
|
eqid |
⊢ 𝐵 = 𝐵 |
| 84 |
83
|
a1i |
⊢ ( ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ → 𝐵 = 𝐵 ) |
| 85 |
79 82 84
|
mpteq12df |
⊢ ( ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ → ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) = ( 𝑘 ∈ ∅ ↦ 𝐵 ) ) |
| 86 |
|
mpt0 |
⊢ ( 𝑘 ∈ ∅ ↦ 𝐵 ) = ∅ |
| 87 |
85 86
|
eqtrdi |
⊢ ( ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ → ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) = ∅ ) |
| 88 |
87
|
rneqd |
⊢ ( ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ → ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) = ran ∅ ) |
| 89 |
|
rn0 |
⊢ ran ∅ = ∅ |
| 90 |
88 89
|
eqtrdi |
⊢ ( ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ → ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) = ∅ ) |
| 91 |
78 90
|
esumeq1d |
⊢ ( ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ → Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 = Σ* 𝑦 ∈ ∅ 𝐶 ) |
| 92 |
|
esumnul |
⊢ Σ* 𝑦 ∈ ∅ 𝐶 = 0 |
| 93 |
91 92
|
eqtrdi |
⊢ ( ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ → Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 = 0 ) |
| 94 |
|
0le0 |
⊢ 0 ≤ 0 |
| 95 |
93 94
|
eqbrtrdi |
⊢ ( ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ → Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ≤ 0 ) |
| 96 |
77 95
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ∃ 𝑘 ∈ 𝐴 𝐵 = ∅ ) → Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ≤ 0 ) |
| 97 |
76 96
|
pm2.61dan |
⊢ ( 𝜑 → Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ≤ 0 ) |
| 98 |
|
ssrab2 |
⊢ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ⊆ 𝐴 |
| 99 |
98
|
a1i |
⊢ ( 𝜑 → { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ⊆ 𝐴 ) |
| 100 |
2 99
|
ssexd |
⊢ ( 𝜑 → { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ∈ V ) |
| 101 |
|
nfrab1 |
⊢ Ⅎ 𝑘 { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } |
| 102 |
101
|
mptexgf |
⊢ ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ∈ V → ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∈ V ) |
| 103 |
|
rnexg |
⊢ ( ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∈ V → ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∈ V ) |
| 104 |
100 102 103
|
3syl |
⊢ ( 𝜑 → ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∈ V ) |
| 105 |
1
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) |
| 106 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) ∧ 𝑦 = 𝐵 ) → 𝜑 ) |
| 107 |
99
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) → 𝑘 ∈ 𝐴 ) |
| 108 |
107
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) → 𝑘 ∈ 𝐴 ) |
| 109 |
108
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) ∧ 𝑦 = 𝐵 ) → 𝑘 ∈ 𝐴 ) |
| 110 |
106 109 3
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) ∧ 𝑦 = 𝐵 ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
| 111 |
105 110
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) ∧ 𝑦 = 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 112 |
54 111 66
|
r19.29af |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 113 |
112
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 114 |
|
nfcv |
⊢ Ⅎ 𝑦 ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) |
| 115 |
114
|
esumcl |
⊢ ( ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∈ V ∧ ∀ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 116 |
104 113 115
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 117 |
|
elxrge0 |
⊢ ( Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ∈ ℝ* ∧ 0 ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) ) |
| 118 |
117
|
simprbi |
⊢ ( Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ∈ ( 0 [,] +∞ ) → 0 ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) |
| 119 |
116 118
|
syl |
⊢ ( 𝜑 → 0 ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) |
| 120 |
97 119
|
jca |
⊢ ( 𝜑 → ( Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ≤ 0 ∧ 0 ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) ) |
| 121 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 122 |
121 116
|
sselid |
⊢ ( 𝜑 → Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ∈ ℝ* ) |
| 123 |
121 48
|
sselii |
⊢ 0 ∈ ℝ* |
| 124 |
123
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
| 125 |
|
xrletri3 |
⊢ ( ( Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 = 0 ↔ ( Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ≤ 0 ∧ 0 ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) ) ) |
| 126 |
122 124 125
|
syl2anc |
⊢ ( 𝜑 → ( Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 = 0 ↔ ( Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ≤ 0 ∧ 0 ≤ Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) ) ) |
| 127 |
120 126
|
mpbird |
⊢ ( 𝜑 → Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 = 0 ) |
| 128 |
127
|
oveq1d |
⊢ ( 𝜑 → ( Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 +𝑒 Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) = ( 0 +𝑒 Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) ) |
| 129 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ∈ ( 0 [,] +∞ ) ) |
| 130 |
7
|
esumcl |
⊢ ( ( { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ∈ V ∧ ∀ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ∈ ( 0 [,] +∞ ) ) |
| 131 |
10 129 130
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ∈ ( 0 [,] +∞ ) ) |
| 132 |
121 131
|
sselid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ∈ ℝ* ) |
| 133 |
24 132
|
eqeltrd |
⊢ ( 𝜑 → Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ∈ ℝ* ) |
| 134 |
|
xaddlid |
⊢ ( Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ∈ ℝ* → ( 0 +𝑒 Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) |
| 135 |
133 134
|
syl |
⊢ ( 𝜑 → ( 0 +𝑒 Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) |
| 136 |
128 135
|
eqtrd |
⊢ ( 𝜑 → ( Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 +𝑒 Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) = Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) |
| 137 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) → 𝜑 ) |
| 138 |
57
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) → 𝐵 = ∅ ) |
| 139 |
137 107 138 5
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) → 𝐷 = 0 ) |
| 140 |
139
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } 𝐷 = 0 ) |
| 141 |
31 140
|
esumeq2d |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } 𝐷 = Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } 0 ) |
| 142 |
101
|
esum0 |
⊢ ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ∈ V → Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } 0 = 0 ) |
| 143 |
100 142
|
syl |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } 0 = 0 ) |
| 144 |
141 143
|
eqtrd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } 𝐷 = 0 ) |
| 145 |
144
|
oveq1d |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } 𝐷 +𝑒 Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ) = ( 0 +𝑒 Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ) ) |
| 146 |
|
xaddlid |
⊢ ( Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ∈ ℝ* → ( 0 +𝑒 Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ) = Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ) |
| 147 |
132 146
|
syl |
⊢ ( 𝜑 → ( 0 +𝑒 Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ) = Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ) |
| 148 |
145 147
|
eqtrd |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } 𝐷 +𝑒 Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ) = Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ) |
| 149 |
24 136 148
|
3eqtr4d |
⊢ ( 𝜑 → ( Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 +𝑒 Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) = ( Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } 𝐷 +𝑒 Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ) ) |
| 150 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 151 |
|
nfcv |
⊢ Ⅎ 𝑦 ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) |
| 152 |
7
|
mptexgf |
⊢ ( { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ∈ V → ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ∈ V ) |
| 153 |
|
rnexg |
⊢ ( ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ∈ V → ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ∈ V ) |
| 154 |
10 152 153
|
3syl |
⊢ ( 𝜑 → ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ∈ V ) |
| 155 |
69
|
ssrind |
⊢ ( 𝜑 → ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∩ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) ⊆ ( { ∅ } ∩ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) ) |
| 156 |
|
incom |
⊢ ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ∩ { ∅ } ) = ( { ∅ } ∩ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) |
| 157 |
15
|
neqned |
⊢ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } → 𝐵 ≠ ∅ ) |
| 158 |
157
|
necomd |
⊢ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } → ∅ ≠ 𝐵 ) |
| 159 |
158
|
neneqd |
⊢ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } → ¬ ∅ = 𝐵 ) |
| 160 |
159
|
nrex |
⊢ ¬ ∃ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ∅ = 𝐵 |
| 161 |
|
eqid |
⊢ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) = ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) |
| 162 |
161
|
elrnmpt |
⊢ ( ∅ ∈ V → ( ∅ ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ↔ ∃ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ∅ = 𝐵 ) ) |
| 163 |
72 162
|
ax-mp |
⊢ ( ∅ ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ↔ ∃ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ∅ = 𝐵 ) |
| 164 |
160 163
|
mtbir |
⊢ ¬ ∅ ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) |
| 165 |
|
disjsn |
⊢ ( ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) |
| 166 |
164 165
|
mpbir |
⊢ ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ∩ { ∅ } ) = ∅ |
| 167 |
156 166
|
eqtr3i |
⊢ ( { ∅ } ∩ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) = ∅ |
| 168 |
155 167
|
sseqtrdi |
⊢ ( 𝜑 → ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∩ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) ⊆ ∅ ) |
| 169 |
|
ss0 |
⊢ ( ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∩ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) ⊆ ∅ → ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∩ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) = ∅ ) |
| 170 |
168 169
|
syl |
⊢ ( 𝜑 → ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∩ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) = ∅ ) |
| 171 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) |
| 172 |
171
|
nfrn |
⊢ Ⅎ 𝑘 ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) |
| 173 |
50 172
|
nfel |
⊢ Ⅎ 𝑘 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) |
| 174 |
31 173
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) |
| 175 |
1
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) |
| 176 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) ∧ 𝑦 = 𝐵 ) → 𝜑 ) |
| 177 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) → 𝑘 ∈ 𝐴 ) |
| 178 |
177
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) ∧ 𝑦 = 𝐵 ) → 𝑘 ∈ 𝐴 ) |
| 179 |
176 178 3
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) ∧ 𝑦 = 𝐵 ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
| 180 |
175 179
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) ∧ 𝑦 = 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 181 |
161
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ↔ ∃ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝑦 = 𝐵 ) ) |
| 182 |
61 181
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ↔ ∃ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝑦 = 𝐵 ) |
| 183 |
182
|
biimpi |
⊢ ( 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) → ∃ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝑦 = 𝐵 ) |
| 184 |
183
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) → ∃ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝑦 = 𝐵 ) |
| 185 |
174 180 184
|
r19.29af |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 186 |
150 114 151 104 154 170 112 185
|
esumsplit |
⊢ ( 𝜑 → Σ* 𝑦 ∈ ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∪ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) 𝐶 = ( Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 +𝑒 Σ* 𝑦 ∈ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) 𝐶 ) ) |
| 187 |
|
rabnc |
⊢ ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ∩ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) = ∅ |
| 188 |
187
|
a1i |
⊢ ( 𝜑 → ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ∩ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) = ∅ ) |
| 189 |
107 3
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ) → 𝐷 ∈ ( 0 [,] +∞ ) ) |
| 190 |
31 101 7 100 10 188 189 12
|
esumsplit |
⊢ ( 𝜑 → Σ* 𝑘 ∈ ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ∪ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) 𝐷 = ( Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } 𝐷 +𝑒 Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } 𝐷 ) ) |
| 191 |
149 186 190
|
3eqtr4d |
⊢ ( 𝜑 → Σ* 𝑦 ∈ ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∪ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) 𝐶 = Σ* 𝑘 ∈ ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ∪ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) 𝐷 ) |
| 192 |
|
rabxm |
⊢ 𝐴 = ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ∪ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) |
| 193 |
192 83
|
mpteq12i |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ∪ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) ↦ 𝐵 ) |
| 194 |
|
mptun |
⊢ ( 𝑘 ∈ ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ∪ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) ↦ 𝐵 ) = ( ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∪ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) |
| 195 |
193 194
|
eqtri |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∪ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) |
| 196 |
195
|
rneqi |
⊢ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ran ( ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∪ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) |
| 197 |
|
rnun |
⊢ ran ( ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∪ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) = ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∪ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) |
| 198 |
196 197
|
eqtri |
⊢ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∪ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) |
| 199 |
198
|
a1i |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∪ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) ) |
| 200 |
150 199
|
esumeq1d |
⊢ ( 𝜑 → Σ* 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝐶 = Σ* 𝑦 ∈ ( ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ↦ 𝐵 ) ∪ ran ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ↦ 𝐵 ) ) 𝐶 ) |
| 201 |
192
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ∪ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) ) |
| 202 |
31 201
|
esumeq1d |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐷 = Σ* 𝑘 ∈ ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = ∅ } ∪ { 𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅ } ) 𝐷 ) |
| 203 |
191 200 202
|
3eqtr4d |
⊢ ( 𝜑 → Σ* 𝑦 ∈ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) 𝐶 = Σ* 𝑘 ∈ 𝐴 𝐷 ) |