Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabnc | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inrab | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ ¬ 𝜑 ) } | |
| 2 | pm3.24 | ⊢ ¬ ( 𝜑 ∧ ¬ 𝜑 ) | |
| 3 | 2 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝜑 ∧ ¬ 𝜑 ) |
| 4 | rabeq0 | ⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ ¬ 𝜑 ) } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝜑 ∧ ¬ 𝜑 ) ) | |
| 5 | 3 4 | mpbir | ⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝜑 ∧ ¬ 𝜑 ) } = ∅ |
| 6 | 1 5 | eqtri | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ { 𝑥 ∈ 𝐴 ∣ ¬ 𝜑 } ) = ∅ |