Description: Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabnc | |- ( { x e. A | ph } i^i { x e. A | -. ph } ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inrab | |- ( { x e. A | ph } i^i { x e. A | -. ph } ) = { x e. A | ( ph /\ -. ph ) } |
|
| 2 | pm3.24 | |- -. ( ph /\ -. ph ) |
|
| 3 | 2 | rgenw | |- A. x e. A -. ( ph /\ -. ph ) |
| 4 | rabeq0 | |- ( { x e. A | ( ph /\ -. ph ) } = (/) <-> A. x e. A -. ( ph /\ -. ph ) ) |
|
| 5 | 3 4 | mpbir | |- { x e. A | ( ph /\ -. ph ) } = (/) |
| 6 | 1 5 | eqtri | |- ( { x e. A | ph } i^i { x e. A | -. ph } ) = (/) |