| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumfzf.1 |
⊢ Ⅎ 𝑘 𝐹 |
| 2 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 = 1 |
| 3 |
|
oveq2 |
⊢ ( 𝑖 = 1 → ( 1 ... 𝑖 ) = ( 1 ... 1 ) ) |
| 4 |
2 3
|
esumeq1d |
⊢ ( 𝑖 = 1 → Σ* 𝑘 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑘 ) = Σ* 𝑘 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑘 ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑖 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 1 ) ) |
| 6 |
4 5
|
eqeq12d |
⊢ ( 𝑖 = 1 → ( Σ* 𝑘 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑖 ) ↔ Σ* 𝑘 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 1 ) ) ) |
| 7 |
6
|
imbi2d |
⊢ ( 𝑖 = 1 → ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑖 ) ) ↔ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 1 ) ) ) ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 = 𝑛 |
| 9 |
|
oveq2 |
⊢ ( 𝑖 = 𝑛 → ( 1 ... 𝑖 ) = ( 1 ... 𝑛 ) ) |
| 10 |
8 9
|
esumeq1d |
⊢ ( 𝑖 = 𝑛 → Σ* 𝑘 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑘 ) = Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑖 = 𝑛 → ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑖 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) ) |
| 12 |
10 11
|
eqeq12d |
⊢ ( 𝑖 = 𝑛 → ( Σ* 𝑘 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑖 ) ↔ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) ) ) |
| 13 |
12
|
imbi2d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑖 ) ) ↔ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 14 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 = ( 𝑛 + 1 ) |
| 15 |
|
oveq2 |
⊢ ( 𝑖 = ( 𝑛 + 1 ) → ( 1 ... 𝑖 ) = ( 1 ... ( 𝑛 + 1 ) ) ) |
| 16 |
14 15
|
esumeq1d |
⊢ ( 𝑖 = ( 𝑛 + 1 ) → Σ* 𝑘 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑘 ) = Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑛 + 1 ) → ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑖 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
| 18 |
16 17
|
eqeq12d |
⊢ ( 𝑖 = ( 𝑛 + 1 ) → ( Σ* 𝑘 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑖 ) ↔ Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 19 |
18
|
imbi2d |
⊢ ( 𝑖 = ( 𝑛 + 1 ) → ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑖 ) ) ↔ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 20 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 = 𝑁 |
| 21 |
|
oveq2 |
⊢ ( 𝑖 = 𝑁 → ( 1 ... 𝑖 ) = ( 1 ... 𝑁 ) ) |
| 22 |
20 21
|
esumeq1d |
⊢ ( 𝑖 = 𝑁 → Σ* 𝑘 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑘 ) = Σ* 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑖 = 𝑁 → ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑖 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑁 ) ) |
| 24 |
22 23
|
eqeq12d |
⊢ ( 𝑖 = 𝑁 → ( Σ* 𝑘 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑖 ) ↔ Σ* 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑁 ) ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑖 = 𝑁 → ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑖 ) ) ↔ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑁 ) ) ) ) |
| 26 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 27 |
|
nfcv |
⊢ Ⅎ 𝑥 { 1 } |
| 28 |
|
nfcv |
⊢ Ⅎ 𝑘 { 1 } |
| 29 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑘 ) |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
| 31 |
1 30
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑥 ) |
| 32 |
26 27 28 29 31
|
cbvesum |
⊢ Σ* 𝑘 ∈ { 1 } ( 𝐹 ‘ 𝑘 ) = Σ* 𝑥 ∈ { 1 } ( 𝐹 ‘ 𝑥 ) |
| 33 |
|
simpr |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = 1 ) → 𝑥 = 1 ) |
| 34 |
33
|
fveq2d |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ∧ 𝑥 = 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 1 ) ) |
| 35 |
|
1z |
⊢ 1 ∈ ℤ |
| 36 |
35
|
a1i |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → 1 ∈ ℤ ) |
| 37 |
|
1nn |
⊢ 1 ∈ ℕ |
| 38 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ∧ 1 ∈ ℕ ) → ( 𝐹 ‘ 1 ) ∈ ( 0 [,] +∞ ) ) |
| 39 |
37 38
|
mpan2 |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → ( 𝐹 ‘ 1 ) ∈ ( 0 [,] +∞ ) ) |
| 40 |
34 36 39
|
esumsn |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑥 ∈ { 1 } ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 1 ) ) |
| 41 |
32 40
|
eqtrid |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ { 1 } ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 1 ) ) |
| 42 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
| 43 |
35 42
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
| 44 |
|
esumeq1 |
⊢ ( ( 1 ... 1 ) = { 1 } → Σ* 𝑘 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑘 ) = Σ* 𝑘 ∈ { 1 } ( 𝐹 ‘ 𝑘 ) ) |
| 45 |
43 44
|
ax-mp |
⊢ Σ* 𝑘 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑘 ) = Σ* 𝑘 ∈ { 1 } ( 𝐹 ‘ 𝑘 ) |
| 46 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( +𝑒 , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 47 |
35 46
|
ax-mp |
⊢ ( seq 1 ( +𝑒 , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) |
| 48 |
41 45 47
|
3eqtr4g |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 1 ) ) |
| 49 |
|
simpl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → 𝑛 ∈ ℕ ) |
| 50 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 51 |
49 50
|
eleqtrdi |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 52 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( +𝑒 , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) +𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 53 |
51 52
|
syl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → ( seq 1 ( +𝑒 , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) +𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) ) → ( seq 1 ( +𝑒 , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) +𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 55 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) ) |
| 56 |
55
|
oveq1d |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) ) → ( Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) +𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = ( ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) +𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 57 |
|
nfv |
⊢ Ⅎ 𝑘 𝑛 ∈ ℕ |
| 58 |
57
|
nfci |
⊢ Ⅎ 𝑘 ℕ |
| 59 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 0 [,] +∞ ) |
| 60 |
1 58 59
|
nff |
⊢ Ⅎ 𝑘 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) |
| 61 |
57 60
|
nfan |
⊢ Ⅎ 𝑘 ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) |
| 62 |
|
fzsuc |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑛 + 1 ) ) = ( ( 1 ... 𝑛 ) ∪ { ( 𝑛 + 1 ) } ) ) |
| 63 |
51 62
|
syl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → ( 1 ... ( 𝑛 + 1 ) ) = ( ( 1 ... 𝑛 ) ∪ { ( 𝑛 + 1 ) } ) ) |
| 64 |
61 63
|
esumeq1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝐹 ‘ 𝑘 ) = Σ* 𝑘 ∈ ( ( 1 ... 𝑛 ) ∪ { ( 𝑛 + 1 ) } ) ( 𝐹 ‘ 𝑘 ) ) |
| 65 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 1 ... 𝑛 ) |
| 66 |
|
nfcv |
⊢ Ⅎ 𝑘 { ( 𝑛 + 1 ) } |
| 67 |
|
ovexd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → ( 1 ... 𝑛 ) ∈ V ) |
| 68 |
|
snex |
⊢ { ( 𝑛 + 1 ) } ∈ V |
| 69 |
68
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → { ( 𝑛 + 1 ) } ∈ V ) |
| 70 |
|
fzp1disj |
⊢ ( ( 1 ... 𝑛 ) ∩ { ( 𝑛 + 1 ) } ) = ∅ |
| 71 |
70
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → ( ( 1 ... 𝑛 ) ∩ { ( 𝑛 + 1 ) } ) = ∅ ) |
| 72 |
|
simplr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) |
| 73 |
|
fzssnn |
⊢ ( 1 ∈ ℕ → ( 1 ... 𝑛 ) ⊆ ℕ ) |
| 74 |
37 73
|
ax-mp |
⊢ ( 1 ... 𝑛 ) ⊆ ℕ |
| 75 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ( 1 ... 𝑛 ) ) |
| 76 |
74 75
|
sselid |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ℕ ) |
| 77 |
72 76
|
ffvelcdmd |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 0 [,] +∞ ) ) |
| 78 |
|
simplr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ 𝑘 ∈ { ( 𝑛 + 1 ) } ) → 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) |
| 79 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ 𝑘 ∈ { ( 𝑛 + 1 ) } ) → 𝑘 ∈ { ( 𝑛 + 1 ) } ) |
| 80 |
|
velsn |
⊢ ( 𝑘 ∈ { ( 𝑛 + 1 ) } ↔ 𝑘 = ( 𝑛 + 1 ) ) |
| 81 |
79 80
|
sylib |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ 𝑘 ∈ { ( 𝑛 + 1 ) } ) → 𝑘 = ( 𝑛 + 1 ) ) |
| 82 |
|
simpll |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ 𝑘 ∈ { ( 𝑛 + 1 ) } ) → 𝑛 ∈ ℕ ) |
| 83 |
82
|
peano2nnd |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ 𝑘 ∈ { ( 𝑛 + 1 ) } ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 84 |
81 83
|
eqeltrd |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ 𝑘 ∈ { ( 𝑛 + 1 ) } ) → 𝑘 ∈ ℕ ) |
| 85 |
78 84
|
ffvelcdmd |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ 𝑘 ∈ { ( 𝑛 + 1 ) } ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 0 [,] +∞ ) ) |
| 86 |
61 65 66 67 69 71 77 85
|
esumsplit |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ( ( 1 ... 𝑛 ) ∪ { ( 𝑛 + 1 ) } ) ( 𝐹 ‘ 𝑘 ) = ( Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) +𝑒 Σ* 𝑘 ∈ { ( 𝑛 + 1 ) } ( 𝐹 ‘ 𝑘 ) ) ) |
| 87 |
|
nfcv |
⊢ Ⅎ 𝑥 { ( 𝑛 + 1 ) } |
| 88 |
26 87 66 29 31
|
cbvesum |
⊢ Σ* 𝑘 ∈ { ( 𝑛 + 1 ) } ( 𝐹 ‘ 𝑘 ) = Σ* 𝑥 ∈ { ( 𝑛 + 1 ) } ( 𝐹 ‘ 𝑥 ) |
| 89 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ 𝑥 = ( 𝑛 + 1 ) ) → 𝑥 = ( 𝑛 + 1 ) ) |
| 90 |
89
|
fveq2d |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ 𝑥 = ( 𝑛 + 1 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 91 |
49
|
peano2nnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 92 |
|
simpr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) |
| 93 |
92 91
|
ffvelcdmd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∈ ( 0 [,] +∞ ) ) |
| 94 |
90 91 93
|
esumsn |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → Σ* 𝑥 ∈ { ( 𝑛 + 1 ) } ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 95 |
88 94
|
eqtrid |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ { ( 𝑛 + 1 ) } ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 96 |
95
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → ( Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) +𝑒 Σ* 𝑘 ∈ { ( 𝑛 + 1 ) } ( 𝐹 ‘ 𝑘 ) ) = ( Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) +𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 97 |
64 86 96
|
3eqtrrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) → ( Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) +𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) |
| 98 |
97
|
adantr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) ) → ( Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) +𝑒 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) = Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝐹 ‘ 𝑘 ) ) |
| 99 |
54 56 98
|
3eqtr2rd |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) ∧ Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) ) → Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) |
| 100 |
99
|
exp31 |
⊢ ( 𝑛 ∈ ℕ → ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → ( Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) → Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 101 |
100
|
a2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑛 ) ) → ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ( 1 ... ( 𝑛 + 1 ) ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 102 |
7 13 19 25 48 101
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑁 ) ) ) |
| 103 |
102
|
impcom |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ∧ 𝑁 ∈ ℕ ) → Σ* 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( seq 1 ( +𝑒 , 𝐹 ) ‘ 𝑁 ) ) |