| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvesum.1 |
⊢ ( 𝑗 = 𝑘 → 𝐵 = 𝐶 ) |
| 2 |
|
cbvesum.2 |
⊢ Ⅎ 𝑘 𝐴 |
| 3 |
|
cbvesum.3 |
⊢ Ⅎ 𝑗 𝐴 |
| 4 |
|
cbvesum.4 |
⊢ Ⅎ 𝑘 𝐵 |
| 5 |
|
cbvesum.5 |
⊢ Ⅎ 𝑗 𝐶 |
| 6 |
3 2 4 5 1
|
cbvmptf |
⊢ ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) |
| 7 |
6
|
oveq2i |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
| 8 |
7
|
unieqi |
⊢ ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
| 9 |
|
df-esum |
⊢ Σ* 𝑗 ∈ 𝐴 𝐵 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) |
| 10 |
|
df-esum |
⊢ Σ* 𝑘 ∈ 𝐴 𝐶 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
| 11 |
8 9 10
|
3eqtr4i |
⊢ Σ* 𝑗 ∈ 𝐴 𝐵 = Σ* 𝑘 ∈ 𝐴 𝐶 |