Metamath Proof Explorer


Theorem cbvesumv

Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017)

Ref Expression
Hypothesis cbvesum.1 ( 𝑗 = 𝑘𝐵 = 𝐶 )
Assertion cbvesumv Σ* 𝑗𝐴 𝐵 = Σ* 𝑘𝐴 𝐶

Proof

Step Hyp Ref Expression
1 cbvesum.1 ( 𝑗 = 𝑘𝐵 = 𝐶 )
2 nfcv 𝑘 𝐴
3 nfcv 𝑗 𝐴
4 nfcv 𝑘 𝐵
5 nfcv 𝑗 𝐶
6 1 2 3 4 5 cbvesum Σ* 𝑗𝐴 𝐵 = Σ* 𝑘𝐴 𝐶