Step |
Hyp |
Ref |
Expression |
1 |
|
cbvesum.1 |
⊢ ( 𝑗 = 𝑘 → 𝐵 = 𝐶 ) |
2 |
1
|
cbvmptv |
⊢ ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) |
3 |
2
|
oveq2i |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
4 |
3
|
unieqi |
⊢ ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
5 |
|
df-esum |
⊢ Σ* 𝑗 ∈ 𝐴 𝐵 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑗 ∈ 𝐴 ↦ 𝐵 ) ) |
6 |
|
df-esum |
⊢ Σ* 𝑘 ∈ 𝐴 𝐶 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
7 |
4 5 6
|
3eqtr4i |
⊢ Σ* 𝑗 ∈ 𝐴 𝐵 = Σ* 𝑘 ∈ 𝐴 𝐶 |