Metamath Proof Explorer


Theorem cbvesumv

Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017)

Ref Expression
Hypothesis cbvesum.1 ( 𝑗 = 𝑘𝐵 = 𝐶 )
Assertion cbvesumv Σ* 𝑗𝐴 𝐵 = Σ* 𝑘𝐴 𝐶

Proof

Step Hyp Ref Expression
1 cbvesum.1 ( 𝑗 = 𝑘𝐵 = 𝐶 )
2 1 cbvmptv ( 𝑗𝐴𝐵 ) = ( 𝑘𝐴𝐶 )
3 2 oveq2i ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑗𝐴𝐵 ) ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐶 ) )
4 3 unieqi ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑗𝐴𝐵 ) ) = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐶 ) )
5 df-esum Σ* 𝑗𝐴 𝐵 = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑗𝐴𝐵 ) )
6 df-esum Σ* 𝑘𝐴 𝐶 = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐶 ) )
7 4 5 6 3eqtr4i Σ* 𝑗𝐴 𝐵 = Σ* 𝑘𝐴 𝐶