Metamath Proof Explorer


Theorem cbvesumv

Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017)

Ref Expression
Hypothesis cbvesum.1 j = k B = C
Assertion cbvesumv * j A B = * k A C

Proof

Step Hyp Ref Expression
1 cbvesum.1 j = k B = C
2 1 cbvmptv j A B = k A C
3 2 oveq2i 𝑠 * 𝑠 0 +∞ tsums j A B = 𝑠 * 𝑠 0 +∞ tsums k A C
4 3 unieqi 𝑠 * 𝑠 0 +∞ tsums j A B = 𝑠 * 𝑠 0 +∞ tsums k A C
5 df-esum * j A B = 𝑠 * 𝑠 0 +∞ tsums j A B
6 df-esum * k A C = 𝑠 * 𝑠 0 +∞ tsums k A C
7 4 5 6 3eqtr4i * j A B = * k A C