Metamath Proof Explorer


Theorem cbvesumv

Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017)

Ref Expression
Hypothesis cbvesum.1 j = k B = C
Assertion cbvesumv * j A B = * k A C

Proof

Step Hyp Ref Expression
1 cbvesum.1 j = k B = C
2 nfcv _ k A
3 nfcv _ j A
4 nfcv _ k B
5 nfcv _ j C
6 1 2 3 4 5 cbvesum * j A B = * k A C