Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Real and complex functions
Extended sum
cbvesumv
Next ⟩
esumid
Metamath Proof Explorer
Ascii
Unicode
Theorem
cbvesumv
Description:
Change bound variable in an extended sum.
(Contributed by
Thierry Arnoux
, 19-Jun-2017)
Ref
Expression
Hypothesis
cbvesum.1
⊢
j
=
k
→
B
=
C
Assertion
cbvesumv
⊢
∑
*
j
∈
A
B
=
∑
*
k
∈
A
C
Proof
Step
Hyp
Ref
Expression
1
cbvesum.1
⊢
j
=
k
→
B
=
C
2
1
cbvmptv
⊢
j
∈
A
⟼
B
=
k
∈
A
⟼
C
3
2
oveq2i
⊢
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
j
∈
A
⟼
B
=
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
C
4
3
unieqi
⊢
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
j
∈
A
⟼
B
=
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
C
5
df-esum
⊢
∑
*
j
∈
A
B
=
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
j
∈
A
⟼
B
6
df-esum
⊢
∑
*
k
∈
A
C
=
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
C
7
4
5
6
3eqtr4i
⊢
∑
*
j
∈
A
B
=
∑
*
k
∈
A
C