| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvesum.1 |
|- ( j = k -> B = C ) |
| 2 |
1
|
cbvmptv |
|- ( j e. A |-> B ) = ( k e. A |-> C ) |
| 3 |
2
|
oveq2i |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( j e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) |
| 4 |
3
|
unieqi |
|- U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( j e. A |-> B ) ) = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) |
| 5 |
|
df-esum |
|- sum* j e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( j e. A |-> B ) ) |
| 6 |
|
df-esum |
|- sum* k e. A C = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) |
| 7 |
4 5 6
|
3eqtr4i |
|- sum* j e. A B = sum* k e. A C |