Metamath Proof Explorer


Theorem cbvesumv

Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017)

Ref Expression
Hypothesis cbvesum.1
|- ( j = k -> B = C )
Assertion cbvesumv
|- sum* j e. A B = sum* k e. A C

Proof

Step Hyp Ref Expression
1 cbvesum.1
 |-  ( j = k -> B = C )
2 1 cbvmptv
 |-  ( j e. A |-> B ) = ( k e. A |-> C )
3 2 oveq2i
 |-  ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( j e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) )
4 3 unieqi
 |-  U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( j e. A |-> B ) ) = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) )
5 df-esum
 |-  sum* j e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( j e. A |-> B ) )
6 df-esum
 |-  sum* k e. A C = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) )
7 4 5 6 3eqtr4i
 |-  sum* j e. A B = sum* k e. A C