Step |
Hyp |
Ref |
Expression |
1 |
|
cbvesum.1 |
|- ( j = k -> B = C ) |
2 |
|
cbvesum.2 |
|- F/_ k A |
3 |
|
cbvesum.3 |
|- F/_ j A |
4 |
|
cbvesum.4 |
|- F/_ k B |
5 |
|
cbvesum.5 |
|- F/_ j C |
6 |
3 2 4 5 1
|
cbvmptf |
|- ( j e. A |-> B ) = ( k e. A |-> C ) |
7 |
6
|
oveq2i |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( j e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) |
8 |
7
|
unieqi |
|- U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( j e. A |-> B ) ) = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) |
9 |
|
df-esum |
|- sum* j e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( j e. A |-> B ) ) |
10 |
|
df-esum |
|- sum* k e. A C = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) |
11 |
8 9 10
|
3eqtr4i |
|- sum* j e. A B = sum* k e. A C |