Metamath Proof Explorer


Theorem cbvesum

Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017)

Ref Expression
Hypotheses cbvesum.1
|- ( j = k -> B = C )
cbvesum.2
|- F/_ k A
cbvesum.3
|- F/_ j A
cbvesum.4
|- F/_ k B
cbvesum.5
|- F/_ j C
Assertion cbvesum
|- sum* j e. A B = sum* k e. A C

Proof

Step Hyp Ref Expression
1 cbvesum.1
 |-  ( j = k -> B = C )
2 cbvesum.2
 |-  F/_ k A
3 cbvesum.3
 |-  F/_ j A
4 cbvesum.4
 |-  F/_ k B
5 cbvesum.5
 |-  F/_ j C
6 3 2 4 5 1 cbvmptf
 |-  ( j e. A |-> B ) = ( k e. A |-> C )
7 6 oveq2i
 |-  ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( j e. A |-> B ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) )
8 7 unieqi
 |-  U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( j e. A |-> B ) ) = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) )
9 df-esum
 |-  sum* j e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( j e. A |-> B ) )
10 df-esum
 |-  sum* k e. A C = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) )
11 8 9 10 3eqtr4i
 |-  sum* j e. A B = sum* k e. A C