Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Real and complex functions
Extended sum
cbvesum
Next ⟩
cbvesumv
Metamath Proof Explorer
Ascii
Unicode
Theorem
cbvesum
Description:
Change bound variable in an extended sum.
(Contributed by
Thierry Arnoux
, 19-Jun-2017)
Ref
Expression
Hypotheses
cbvesum.1
⊢
j
=
k
→
B
=
C
cbvesum.2
⊢
Ⅎ
_
k
A
cbvesum.3
⊢
Ⅎ
_
j
A
cbvesum.4
⊢
Ⅎ
_
k
B
cbvesum.5
⊢
Ⅎ
_
j
C
Assertion
cbvesum
⊢
∑
*
j
∈
A
B
=
∑
*
k
∈
A
C
Proof
Step
Hyp
Ref
Expression
1
cbvesum.1
⊢
j
=
k
→
B
=
C
2
cbvesum.2
⊢
Ⅎ
_
k
A
3
cbvesum.3
⊢
Ⅎ
_
j
A
4
cbvesum.4
⊢
Ⅎ
_
k
B
5
cbvesum.5
⊢
Ⅎ
_
j
C
6
3
2
4
5
1
cbvmptf
⊢
j
∈
A
⟼
B
=
k
∈
A
⟼
C
7
6
oveq2i
⊢
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
j
∈
A
⟼
B
=
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
C
8
7
unieqi
⊢
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
j
∈
A
⟼
B
=
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
C
9
df-esum
⊢
∑
*
j
∈
A
B
=
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
j
∈
A
⟼
B
10
df-esum
⊢
∑
*
k
∈
A
C
=
⋃
ℝ
𝑠
*
↾
𝑠
0
+∞
tsums
k
∈
A
⟼
C
11
8
9
10
3eqtr4i
⊢
∑
*
j
∈
A
B
=
∑
*
k
∈
A
C