Metamath Proof Explorer


Theorem cbvesum

Description: Change bound variable in an extended sum. (Contributed by Thierry Arnoux, 19-Jun-2017)

Ref Expression
Hypotheses cbvesum.1 j = k B = C
cbvesum.2 _ k A
cbvesum.3 _ j A
cbvesum.4 _ k B
cbvesum.5 _ j C
Assertion cbvesum * j A B = * k A C

Proof

Step Hyp Ref Expression
1 cbvesum.1 j = k B = C
2 cbvesum.2 _ k A
3 cbvesum.3 _ j A
4 cbvesum.4 _ k B
5 cbvesum.5 _ j C
6 3 2 4 5 1 cbvmptf j A B = k A C
7 6 oveq2i 𝑠 * 𝑠 0 +∞ tsums j A B = 𝑠 * 𝑠 0 +∞ tsums k A C
8 7 unieqi 𝑠 * 𝑠 0 +∞ tsums j A B = 𝑠 * 𝑠 0 +∞ tsums k A C
9 df-esum * j A B = 𝑠 * 𝑠 0 +∞ tsums j A B
10 df-esum * k A C = 𝑠 * 𝑠 0 +∞ tsums k A C
11 8 9 10 3eqtr4i * j A B = * k A C