| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumfzf.1 |
|- F/_ k F |
| 2 |
|
nfv |
|- F/ k i = 1 |
| 3 |
|
oveq2 |
|- ( i = 1 -> ( 1 ... i ) = ( 1 ... 1 ) ) |
| 4 |
2 3
|
esumeq1d |
|- ( i = 1 -> sum* k e. ( 1 ... i ) ( F ` k ) = sum* k e. ( 1 ... 1 ) ( F ` k ) ) |
| 5 |
|
fveq2 |
|- ( i = 1 -> ( seq 1 ( +e , F ) ` i ) = ( seq 1 ( +e , F ) ` 1 ) ) |
| 6 |
4 5
|
eqeq12d |
|- ( i = 1 -> ( sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) <-> sum* k e. ( 1 ... 1 ) ( F ` k ) = ( seq 1 ( +e , F ) ` 1 ) ) ) |
| 7 |
6
|
imbi2d |
|- ( i = 1 -> ( ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) ) <-> ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... 1 ) ( F ` k ) = ( seq 1 ( +e , F ) ` 1 ) ) ) ) |
| 8 |
|
nfv |
|- F/ k i = n |
| 9 |
|
oveq2 |
|- ( i = n -> ( 1 ... i ) = ( 1 ... n ) ) |
| 10 |
8 9
|
esumeq1d |
|- ( i = n -> sum* k e. ( 1 ... i ) ( F ` k ) = sum* k e. ( 1 ... n ) ( F ` k ) ) |
| 11 |
|
fveq2 |
|- ( i = n -> ( seq 1 ( +e , F ) ` i ) = ( seq 1 ( +e , F ) ` n ) ) |
| 12 |
10 11
|
eqeq12d |
|- ( i = n -> ( sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) <-> sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) ) |
| 13 |
12
|
imbi2d |
|- ( i = n -> ( ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) ) <-> ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) ) ) |
| 14 |
|
nfv |
|- F/ k i = ( n + 1 ) |
| 15 |
|
oveq2 |
|- ( i = ( n + 1 ) -> ( 1 ... i ) = ( 1 ... ( n + 1 ) ) ) |
| 16 |
14 15
|
esumeq1d |
|- ( i = ( n + 1 ) -> sum* k e. ( 1 ... i ) ( F ` k ) = sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) ) |
| 17 |
|
fveq2 |
|- ( i = ( n + 1 ) -> ( seq 1 ( +e , F ) ` i ) = ( seq 1 ( +e , F ) ` ( n + 1 ) ) ) |
| 18 |
16 17
|
eqeq12d |
|- ( i = ( n + 1 ) -> ( sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) <-> sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) = ( seq 1 ( +e , F ) ` ( n + 1 ) ) ) ) |
| 19 |
18
|
imbi2d |
|- ( i = ( n + 1 ) -> ( ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) ) <-> ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) = ( seq 1 ( +e , F ) ` ( n + 1 ) ) ) ) ) |
| 20 |
|
nfv |
|- F/ k i = N |
| 21 |
|
oveq2 |
|- ( i = N -> ( 1 ... i ) = ( 1 ... N ) ) |
| 22 |
20 21
|
esumeq1d |
|- ( i = N -> sum* k e. ( 1 ... i ) ( F ` k ) = sum* k e. ( 1 ... N ) ( F ` k ) ) |
| 23 |
|
fveq2 |
|- ( i = N -> ( seq 1 ( +e , F ) ` i ) = ( seq 1 ( +e , F ) ` N ) ) |
| 24 |
22 23
|
eqeq12d |
|- ( i = N -> ( sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) <-> sum* k e. ( 1 ... N ) ( F ` k ) = ( seq 1 ( +e , F ) ` N ) ) ) |
| 25 |
24
|
imbi2d |
|- ( i = N -> ( ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) ) <-> ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... N ) ( F ` k ) = ( seq 1 ( +e , F ) ` N ) ) ) ) |
| 26 |
|
fveq2 |
|- ( k = x -> ( F ` k ) = ( F ` x ) ) |
| 27 |
|
nfcv |
|- F/_ x { 1 } |
| 28 |
|
nfcv |
|- F/_ k { 1 } |
| 29 |
|
nfcv |
|- F/_ x ( F ` k ) |
| 30 |
|
nfcv |
|- F/_ k x |
| 31 |
1 30
|
nffv |
|- F/_ k ( F ` x ) |
| 32 |
26 27 28 29 31
|
cbvesum |
|- sum* k e. { 1 } ( F ` k ) = sum* x e. { 1 } ( F ` x ) |
| 33 |
|
simpr |
|- ( ( F : NN --> ( 0 [,] +oo ) /\ x = 1 ) -> x = 1 ) |
| 34 |
33
|
fveq2d |
|- ( ( F : NN --> ( 0 [,] +oo ) /\ x = 1 ) -> ( F ` x ) = ( F ` 1 ) ) |
| 35 |
|
1z |
|- 1 e. ZZ |
| 36 |
35
|
a1i |
|- ( F : NN --> ( 0 [,] +oo ) -> 1 e. ZZ ) |
| 37 |
|
1nn |
|- 1 e. NN |
| 38 |
|
ffvelcdm |
|- ( ( F : NN --> ( 0 [,] +oo ) /\ 1 e. NN ) -> ( F ` 1 ) e. ( 0 [,] +oo ) ) |
| 39 |
37 38
|
mpan2 |
|- ( F : NN --> ( 0 [,] +oo ) -> ( F ` 1 ) e. ( 0 [,] +oo ) ) |
| 40 |
34 36 39
|
esumsn |
|- ( F : NN --> ( 0 [,] +oo ) -> sum* x e. { 1 } ( F ` x ) = ( F ` 1 ) ) |
| 41 |
32 40
|
eqtrid |
|- ( F : NN --> ( 0 [,] +oo ) -> sum* k e. { 1 } ( F ` k ) = ( F ` 1 ) ) |
| 42 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
| 43 |
35 42
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
| 44 |
|
esumeq1 |
|- ( ( 1 ... 1 ) = { 1 } -> sum* k e. ( 1 ... 1 ) ( F ` k ) = sum* k e. { 1 } ( F ` k ) ) |
| 45 |
43 44
|
ax-mp |
|- sum* k e. ( 1 ... 1 ) ( F ` k ) = sum* k e. { 1 } ( F ` k ) |
| 46 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( +e , F ) ` 1 ) = ( F ` 1 ) ) |
| 47 |
35 46
|
ax-mp |
|- ( seq 1 ( +e , F ) ` 1 ) = ( F ` 1 ) |
| 48 |
41 45 47
|
3eqtr4g |
|- ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... 1 ) ( F ` k ) = ( seq 1 ( +e , F ) ` 1 ) ) |
| 49 |
|
simpl |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> n e. NN ) |
| 50 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 51 |
49 50
|
eleqtrdi |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> n e. ( ZZ>= ` 1 ) ) |
| 52 |
|
seqp1 |
|- ( n e. ( ZZ>= ` 1 ) -> ( seq 1 ( +e , F ) ` ( n + 1 ) ) = ( ( seq 1 ( +e , F ) ` n ) +e ( F ` ( n + 1 ) ) ) ) |
| 53 |
51 52
|
syl |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( seq 1 ( +e , F ) ` ( n + 1 ) ) = ( ( seq 1 ( +e , F ) ` n ) +e ( F ` ( n + 1 ) ) ) ) |
| 54 |
53
|
adantr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) -> ( seq 1 ( +e , F ) ` ( n + 1 ) ) = ( ( seq 1 ( +e , F ) ` n ) +e ( F ` ( n + 1 ) ) ) ) |
| 55 |
|
simpr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) -> sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) |
| 56 |
55
|
oveq1d |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) -> ( sum* k e. ( 1 ... n ) ( F ` k ) +e ( F ` ( n + 1 ) ) ) = ( ( seq 1 ( +e , F ) ` n ) +e ( F ` ( n + 1 ) ) ) ) |
| 57 |
|
nfv |
|- F/ k n e. NN |
| 58 |
57
|
nfci |
|- F/_ k NN |
| 59 |
|
nfcv |
|- F/_ k ( 0 [,] +oo ) |
| 60 |
1 58 59
|
nff |
|- F/ k F : NN --> ( 0 [,] +oo ) |
| 61 |
57 60
|
nfan |
|- F/ k ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) |
| 62 |
|
fzsuc |
|- ( n e. ( ZZ>= ` 1 ) -> ( 1 ... ( n + 1 ) ) = ( ( 1 ... n ) u. { ( n + 1 ) } ) ) |
| 63 |
51 62
|
syl |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( 1 ... ( n + 1 ) ) = ( ( 1 ... n ) u. { ( n + 1 ) } ) ) |
| 64 |
61 63
|
esumeq1d |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) = sum* k e. ( ( 1 ... n ) u. { ( n + 1 ) } ) ( F ` k ) ) |
| 65 |
|
nfcv |
|- F/_ k ( 1 ... n ) |
| 66 |
|
nfcv |
|- F/_ k { ( n + 1 ) } |
| 67 |
|
ovexd |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( 1 ... n ) e. _V ) |
| 68 |
|
snex |
|- { ( n + 1 ) } e. _V |
| 69 |
68
|
a1i |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> { ( n + 1 ) } e. _V ) |
| 70 |
|
fzp1disj |
|- ( ( 1 ... n ) i^i { ( n + 1 ) } ) = (/) |
| 71 |
70
|
a1i |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( ( 1 ... n ) i^i { ( n + 1 ) } ) = (/) ) |
| 72 |
|
simplr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. ( 1 ... n ) ) -> F : NN --> ( 0 [,] +oo ) ) |
| 73 |
|
fzssnn |
|- ( 1 e. NN -> ( 1 ... n ) C_ NN ) |
| 74 |
37 73
|
ax-mp |
|- ( 1 ... n ) C_ NN |
| 75 |
|
simpr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. ( 1 ... n ) ) -> k e. ( 1 ... n ) ) |
| 76 |
74 75
|
sselid |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. ( 1 ... n ) ) -> k e. NN ) |
| 77 |
72 76
|
ffvelcdmd |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. ( 1 ... n ) ) -> ( F ` k ) e. ( 0 [,] +oo ) ) |
| 78 |
|
simplr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. { ( n + 1 ) } ) -> F : NN --> ( 0 [,] +oo ) ) |
| 79 |
|
simpr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. { ( n + 1 ) } ) -> k e. { ( n + 1 ) } ) |
| 80 |
|
velsn |
|- ( k e. { ( n + 1 ) } <-> k = ( n + 1 ) ) |
| 81 |
79 80
|
sylib |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. { ( n + 1 ) } ) -> k = ( n + 1 ) ) |
| 82 |
|
simpll |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. { ( n + 1 ) } ) -> n e. NN ) |
| 83 |
82
|
peano2nnd |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. { ( n + 1 ) } ) -> ( n + 1 ) e. NN ) |
| 84 |
81 83
|
eqeltrd |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. { ( n + 1 ) } ) -> k e. NN ) |
| 85 |
78 84
|
ffvelcdmd |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. { ( n + 1 ) } ) -> ( F ` k ) e. ( 0 [,] +oo ) ) |
| 86 |
61 65 66 67 69 71 77 85
|
esumsplit |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> sum* k e. ( ( 1 ... n ) u. { ( n + 1 ) } ) ( F ` k ) = ( sum* k e. ( 1 ... n ) ( F ` k ) +e sum* k e. { ( n + 1 ) } ( F ` k ) ) ) |
| 87 |
|
nfcv |
|- F/_ x { ( n + 1 ) } |
| 88 |
26 87 66 29 31
|
cbvesum |
|- sum* k e. { ( n + 1 ) } ( F ` k ) = sum* x e. { ( n + 1 ) } ( F ` x ) |
| 89 |
|
simpr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ x = ( n + 1 ) ) -> x = ( n + 1 ) ) |
| 90 |
89
|
fveq2d |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ x = ( n + 1 ) ) -> ( F ` x ) = ( F ` ( n + 1 ) ) ) |
| 91 |
49
|
peano2nnd |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( n + 1 ) e. NN ) |
| 92 |
|
simpr |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> F : NN --> ( 0 [,] +oo ) ) |
| 93 |
92 91
|
ffvelcdmd |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( F ` ( n + 1 ) ) e. ( 0 [,] +oo ) ) |
| 94 |
90 91 93
|
esumsn |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> sum* x e. { ( n + 1 ) } ( F ` x ) = ( F ` ( n + 1 ) ) ) |
| 95 |
88 94
|
eqtrid |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> sum* k e. { ( n + 1 ) } ( F ` k ) = ( F ` ( n + 1 ) ) ) |
| 96 |
95
|
oveq2d |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( sum* k e. ( 1 ... n ) ( F ` k ) +e sum* k e. { ( n + 1 ) } ( F ` k ) ) = ( sum* k e. ( 1 ... n ) ( F ` k ) +e ( F ` ( n + 1 ) ) ) ) |
| 97 |
64 86 96
|
3eqtrrd |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( sum* k e. ( 1 ... n ) ( F ` k ) +e ( F ` ( n + 1 ) ) ) = sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) ) |
| 98 |
97
|
adantr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) -> ( sum* k e. ( 1 ... n ) ( F ` k ) +e ( F ` ( n + 1 ) ) ) = sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) ) |
| 99 |
54 56 98
|
3eqtr2rd |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) -> sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) = ( seq 1 ( +e , F ) ` ( n + 1 ) ) ) |
| 100 |
99
|
exp31 |
|- ( n e. NN -> ( F : NN --> ( 0 [,] +oo ) -> ( sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) -> sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) = ( seq 1 ( +e , F ) ` ( n + 1 ) ) ) ) ) |
| 101 |
100
|
a2d |
|- ( n e. NN -> ( ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) -> ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) = ( seq 1 ( +e , F ) ` ( n + 1 ) ) ) ) ) |
| 102 |
7 13 19 25 48 101
|
nnind |
|- ( N e. NN -> ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... N ) ( F ` k ) = ( seq 1 ( +e , F ) ` N ) ) ) |
| 103 |
102
|
impcom |
|- ( ( F : NN --> ( 0 [,] +oo ) /\ N e. NN ) -> sum* k e. ( 1 ... N ) ( F ` k ) = ( seq 1 ( +e , F ) ` N ) ) |