Step |
Hyp |
Ref |
Expression |
1 |
|
esumfzf.1 |
|- F/_ k F |
2 |
|
nfv |
|- F/ k i = 1 |
3 |
|
oveq2 |
|- ( i = 1 -> ( 1 ... i ) = ( 1 ... 1 ) ) |
4 |
2 3
|
esumeq1d |
|- ( i = 1 -> sum* k e. ( 1 ... i ) ( F ` k ) = sum* k e. ( 1 ... 1 ) ( F ` k ) ) |
5 |
|
fveq2 |
|- ( i = 1 -> ( seq 1 ( +e , F ) ` i ) = ( seq 1 ( +e , F ) ` 1 ) ) |
6 |
4 5
|
eqeq12d |
|- ( i = 1 -> ( sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) <-> sum* k e. ( 1 ... 1 ) ( F ` k ) = ( seq 1 ( +e , F ) ` 1 ) ) ) |
7 |
6
|
imbi2d |
|- ( i = 1 -> ( ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) ) <-> ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... 1 ) ( F ` k ) = ( seq 1 ( +e , F ) ` 1 ) ) ) ) |
8 |
|
nfv |
|- F/ k i = n |
9 |
|
oveq2 |
|- ( i = n -> ( 1 ... i ) = ( 1 ... n ) ) |
10 |
8 9
|
esumeq1d |
|- ( i = n -> sum* k e. ( 1 ... i ) ( F ` k ) = sum* k e. ( 1 ... n ) ( F ` k ) ) |
11 |
|
fveq2 |
|- ( i = n -> ( seq 1 ( +e , F ) ` i ) = ( seq 1 ( +e , F ) ` n ) ) |
12 |
10 11
|
eqeq12d |
|- ( i = n -> ( sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) <-> sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) ) |
13 |
12
|
imbi2d |
|- ( i = n -> ( ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) ) <-> ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) ) ) |
14 |
|
nfv |
|- F/ k i = ( n + 1 ) |
15 |
|
oveq2 |
|- ( i = ( n + 1 ) -> ( 1 ... i ) = ( 1 ... ( n + 1 ) ) ) |
16 |
14 15
|
esumeq1d |
|- ( i = ( n + 1 ) -> sum* k e. ( 1 ... i ) ( F ` k ) = sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) ) |
17 |
|
fveq2 |
|- ( i = ( n + 1 ) -> ( seq 1 ( +e , F ) ` i ) = ( seq 1 ( +e , F ) ` ( n + 1 ) ) ) |
18 |
16 17
|
eqeq12d |
|- ( i = ( n + 1 ) -> ( sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) <-> sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) = ( seq 1 ( +e , F ) ` ( n + 1 ) ) ) ) |
19 |
18
|
imbi2d |
|- ( i = ( n + 1 ) -> ( ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) ) <-> ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) = ( seq 1 ( +e , F ) ` ( n + 1 ) ) ) ) ) |
20 |
|
nfv |
|- F/ k i = N |
21 |
|
oveq2 |
|- ( i = N -> ( 1 ... i ) = ( 1 ... N ) ) |
22 |
20 21
|
esumeq1d |
|- ( i = N -> sum* k e. ( 1 ... i ) ( F ` k ) = sum* k e. ( 1 ... N ) ( F ` k ) ) |
23 |
|
fveq2 |
|- ( i = N -> ( seq 1 ( +e , F ) ` i ) = ( seq 1 ( +e , F ) ` N ) ) |
24 |
22 23
|
eqeq12d |
|- ( i = N -> ( sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) <-> sum* k e. ( 1 ... N ) ( F ` k ) = ( seq 1 ( +e , F ) ` N ) ) ) |
25 |
24
|
imbi2d |
|- ( i = N -> ( ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... i ) ( F ` k ) = ( seq 1 ( +e , F ) ` i ) ) <-> ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... N ) ( F ` k ) = ( seq 1 ( +e , F ) ` N ) ) ) ) |
26 |
|
fveq2 |
|- ( k = x -> ( F ` k ) = ( F ` x ) ) |
27 |
|
nfcv |
|- F/_ x { 1 } |
28 |
|
nfcv |
|- F/_ k { 1 } |
29 |
|
nfcv |
|- F/_ x ( F ` k ) |
30 |
|
nfcv |
|- F/_ k x |
31 |
1 30
|
nffv |
|- F/_ k ( F ` x ) |
32 |
26 27 28 29 31
|
cbvesum |
|- sum* k e. { 1 } ( F ` k ) = sum* x e. { 1 } ( F ` x ) |
33 |
|
simpr |
|- ( ( F : NN --> ( 0 [,] +oo ) /\ x = 1 ) -> x = 1 ) |
34 |
33
|
fveq2d |
|- ( ( F : NN --> ( 0 [,] +oo ) /\ x = 1 ) -> ( F ` x ) = ( F ` 1 ) ) |
35 |
|
1z |
|- 1 e. ZZ |
36 |
35
|
a1i |
|- ( F : NN --> ( 0 [,] +oo ) -> 1 e. ZZ ) |
37 |
|
1nn |
|- 1 e. NN |
38 |
|
ffvelrn |
|- ( ( F : NN --> ( 0 [,] +oo ) /\ 1 e. NN ) -> ( F ` 1 ) e. ( 0 [,] +oo ) ) |
39 |
37 38
|
mpan2 |
|- ( F : NN --> ( 0 [,] +oo ) -> ( F ` 1 ) e. ( 0 [,] +oo ) ) |
40 |
34 36 39
|
esumsn |
|- ( F : NN --> ( 0 [,] +oo ) -> sum* x e. { 1 } ( F ` x ) = ( F ` 1 ) ) |
41 |
32 40
|
syl5eq |
|- ( F : NN --> ( 0 [,] +oo ) -> sum* k e. { 1 } ( F ` k ) = ( F ` 1 ) ) |
42 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
43 |
35 42
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
44 |
|
esumeq1 |
|- ( ( 1 ... 1 ) = { 1 } -> sum* k e. ( 1 ... 1 ) ( F ` k ) = sum* k e. { 1 } ( F ` k ) ) |
45 |
43 44
|
ax-mp |
|- sum* k e. ( 1 ... 1 ) ( F ` k ) = sum* k e. { 1 } ( F ` k ) |
46 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( +e , F ) ` 1 ) = ( F ` 1 ) ) |
47 |
35 46
|
ax-mp |
|- ( seq 1 ( +e , F ) ` 1 ) = ( F ` 1 ) |
48 |
41 45 47
|
3eqtr4g |
|- ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... 1 ) ( F ` k ) = ( seq 1 ( +e , F ) ` 1 ) ) |
49 |
|
simpl |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> n e. NN ) |
50 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
51 |
49 50
|
eleqtrdi |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> n e. ( ZZ>= ` 1 ) ) |
52 |
|
seqp1 |
|- ( n e. ( ZZ>= ` 1 ) -> ( seq 1 ( +e , F ) ` ( n + 1 ) ) = ( ( seq 1 ( +e , F ) ` n ) +e ( F ` ( n + 1 ) ) ) ) |
53 |
51 52
|
syl |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( seq 1 ( +e , F ) ` ( n + 1 ) ) = ( ( seq 1 ( +e , F ) ` n ) +e ( F ` ( n + 1 ) ) ) ) |
54 |
53
|
adantr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) -> ( seq 1 ( +e , F ) ` ( n + 1 ) ) = ( ( seq 1 ( +e , F ) ` n ) +e ( F ` ( n + 1 ) ) ) ) |
55 |
|
simpr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) -> sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) |
56 |
55
|
oveq1d |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) -> ( sum* k e. ( 1 ... n ) ( F ` k ) +e ( F ` ( n + 1 ) ) ) = ( ( seq 1 ( +e , F ) ` n ) +e ( F ` ( n + 1 ) ) ) ) |
57 |
|
nfv |
|- F/ k n e. NN |
58 |
57
|
nfci |
|- F/_ k NN |
59 |
|
nfcv |
|- F/_ k ( 0 [,] +oo ) |
60 |
1 58 59
|
nff |
|- F/ k F : NN --> ( 0 [,] +oo ) |
61 |
57 60
|
nfan |
|- F/ k ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) |
62 |
|
fzsuc |
|- ( n e. ( ZZ>= ` 1 ) -> ( 1 ... ( n + 1 ) ) = ( ( 1 ... n ) u. { ( n + 1 ) } ) ) |
63 |
51 62
|
syl |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( 1 ... ( n + 1 ) ) = ( ( 1 ... n ) u. { ( n + 1 ) } ) ) |
64 |
61 63
|
esumeq1d |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) = sum* k e. ( ( 1 ... n ) u. { ( n + 1 ) } ) ( F ` k ) ) |
65 |
|
nfcv |
|- F/_ k ( 1 ... n ) |
66 |
|
nfcv |
|- F/_ k { ( n + 1 ) } |
67 |
|
ovexd |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( 1 ... n ) e. _V ) |
68 |
|
snex |
|- { ( n + 1 ) } e. _V |
69 |
68
|
a1i |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> { ( n + 1 ) } e. _V ) |
70 |
|
fzp1disj |
|- ( ( 1 ... n ) i^i { ( n + 1 ) } ) = (/) |
71 |
70
|
a1i |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( ( 1 ... n ) i^i { ( n + 1 ) } ) = (/) ) |
72 |
|
simplr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. ( 1 ... n ) ) -> F : NN --> ( 0 [,] +oo ) ) |
73 |
|
fzssnn |
|- ( 1 e. NN -> ( 1 ... n ) C_ NN ) |
74 |
37 73
|
ax-mp |
|- ( 1 ... n ) C_ NN |
75 |
|
simpr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. ( 1 ... n ) ) -> k e. ( 1 ... n ) ) |
76 |
74 75
|
sselid |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. ( 1 ... n ) ) -> k e. NN ) |
77 |
72 76
|
ffvelrnd |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. ( 1 ... n ) ) -> ( F ` k ) e. ( 0 [,] +oo ) ) |
78 |
|
simplr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. { ( n + 1 ) } ) -> F : NN --> ( 0 [,] +oo ) ) |
79 |
|
simpr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. { ( n + 1 ) } ) -> k e. { ( n + 1 ) } ) |
80 |
|
velsn |
|- ( k e. { ( n + 1 ) } <-> k = ( n + 1 ) ) |
81 |
79 80
|
sylib |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. { ( n + 1 ) } ) -> k = ( n + 1 ) ) |
82 |
|
simpll |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. { ( n + 1 ) } ) -> n e. NN ) |
83 |
82
|
peano2nnd |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. { ( n + 1 ) } ) -> ( n + 1 ) e. NN ) |
84 |
81 83
|
eqeltrd |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. { ( n + 1 ) } ) -> k e. NN ) |
85 |
78 84
|
ffvelrnd |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ k e. { ( n + 1 ) } ) -> ( F ` k ) e. ( 0 [,] +oo ) ) |
86 |
61 65 66 67 69 71 77 85
|
esumsplit |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> sum* k e. ( ( 1 ... n ) u. { ( n + 1 ) } ) ( F ` k ) = ( sum* k e. ( 1 ... n ) ( F ` k ) +e sum* k e. { ( n + 1 ) } ( F ` k ) ) ) |
87 |
|
nfcv |
|- F/_ x { ( n + 1 ) } |
88 |
26 87 66 29 31
|
cbvesum |
|- sum* k e. { ( n + 1 ) } ( F ` k ) = sum* x e. { ( n + 1 ) } ( F ` x ) |
89 |
|
simpr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ x = ( n + 1 ) ) -> x = ( n + 1 ) ) |
90 |
89
|
fveq2d |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ x = ( n + 1 ) ) -> ( F ` x ) = ( F ` ( n + 1 ) ) ) |
91 |
49
|
peano2nnd |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( n + 1 ) e. NN ) |
92 |
|
simpr |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> F : NN --> ( 0 [,] +oo ) ) |
93 |
92 91
|
ffvelrnd |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( F ` ( n + 1 ) ) e. ( 0 [,] +oo ) ) |
94 |
90 91 93
|
esumsn |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> sum* x e. { ( n + 1 ) } ( F ` x ) = ( F ` ( n + 1 ) ) ) |
95 |
88 94
|
syl5eq |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> sum* k e. { ( n + 1 ) } ( F ` k ) = ( F ` ( n + 1 ) ) ) |
96 |
95
|
oveq2d |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( sum* k e. ( 1 ... n ) ( F ` k ) +e sum* k e. { ( n + 1 ) } ( F ` k ) ) = ( sum* k e. ( 1 ... n ) ( F ` k ) +e ( F ` ( n + 1 ) ) ) ) |
97 |
64 86 96
|
3eqtrrd |
|- ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) -> ( sum* k e. ( 1 ... n ) ( F ` k ) +e ( F ` ( n + 1 ) ) ) = sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) ) |
98 |
97
|
adantr |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) -> ( sum* k e. ( 1 ... n ) ( F ` k ) +e ( F ` ( n + 1 ) ) ) = sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) ) |
99 |
54 56 98
|
3eqtr2rd |
|- ( ( ( n e. NN /\ F : NN --> ( 0 [,] +oo ) ) /\ sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) -> sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) = ( seq 1 ( +e , F ) ` ( n + 1 ) ) ) |
100 |
99
|
exp31 |
|- ( n e. NN -> ( F : NN --> ( 0 [,] +oo ) -> ( sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) -> sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) = ( seq 1 ( +e , F ) ` ( n + 1 ) ) ) ) ) |
101 |
100
|
a2d |
|- ( n e. NN -> ( ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... n ) ( F ` k ) = ( seq 1 ( +e , F ) ` n ) ) -> ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... ( n + 1 ) ) ( F ` k ) = ( seq 1 ( +e , F ) ` ( n + 1 ) ) ) ) ) |
102 |
7 13 19 25 48 101
|
nnind |
|- ( N e. NN -> ( F : NN --> ( 0 [,] +oo ) -> sum* k e. ( 1 ... N ) ( F ` k ) = ( seq 1 ( +e , F ) ` N ) ) ) |
103 |
102
|
impcom |
|- ( ( F : NN --> ( 0 [,] +oo ) /\ N e. NN ) -> sum* k e. ( 1 ... N ) ( F ` k ) = ( seq 1 ( +e , F ) ` N ) ) |