| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumfzf.1 |
|
| 2 |
|
nfv |
|
| 3 |
|
oveq2 |
|
| 4 |
2 3
|
esumeq1d |
|
| 5 |
|
fveq2 |
|
| 6 |
4 5
|
eqeq12d |
|
| 7 |
6
|
imbi2d |
|
| 8 |
|
nfv |
|
| 9 |
|
oveq2 |
|
| 10 |
8 9
|
esumeq1d |
|
| 11 |
|
fveq2 |
|
| 12 |
10 11
|
eqeq12d |
|
| 13 |
12
|
imbi2d |
|
| 14 |
|
nfv |
|
| 15 |
|
oveq2 |
|
| 16 |
14 15
|
esumeq1d |
|
| 17 |
|
fveq2 |
|
| 18 |
16 17
|
eqeq12d |
|
| 19 |
18
|
imbi2d |
|
| 20 |
|
nfv |
|
| 21 |
|
oveq2 |
|
| 22 |
20 21
|
esumeq1d |
|
| 23 |
|
fveq2 |
|
| 24 |
22 23
|
eqeq12d |
|
| 25 |
24
|
imbi2d |
|
| 26 |
|
fveq2 |
|
| 27 |
|
nfcv |
|
| 28 |
|
nfcv |
|
| 29 |
|
nfcv |
|
| 30 |
|
nfcv |
|
| 31 |
1 30
|
nffv |
|
| 32 |
26 27 28 29 31
|
cbvesum |
|
| 33 |
|
simpr |
|
| 34 |
33
|
fveq2d |
|
| 35 |
|
1z |
|
| 36 |
35
|
a1i |
|
| 37 |
|
1nn |
|
| 38 |
|
ffvelcdm |
|
| 39 |
37 38
|
mpan2 |
|
| 40 |
34 36 39
|
esumsn |
|
| 41 |
32 40
|
eqtrid |
|
| 42 |
|
fzsn |
|
| 43 |
35 42
|
ax-mp |
|
| 44 |
|
esumeq1 |
|
| 45 |
43 44
|
ax-mp |
|
| 46 |
|
seq1 |
|
| 47 |
35 46
|
ax-mp |
|
| 48 |
41 45 47
|
3eqtr4g |
|
| 49 |
|
simpl |
|
| 50 |
|
nnuz |
|
| 51 |
49 50
|
eleqtrdi |
|
| 52 |
|
seqp1 |
|
| 53 |
51 52
|
syl |
|
| 54 |
53
|
adantr |
|
| 55 |
|
simpr |
|
| 56 |
55
|
oveq1d |
|
| 57 |
|
nfv |
|
| 58 |
57
|
nfci |
|
| 59 |
|
nfcv |
|
| 60 |
1 58 59
|
nff |
|
| 61 |
57 60
|
nfan |
|
| 62 |
|
fzsuc |
|
| 63 |
51 62
|
syl |
|
| 64 |
61 63
|
esumeq1d |
|
| 65 |
|
nfcv |
|
| 66 |
|
nfcv |
|
| 67 |
|
ovexd |
|
| 68 |
|
snex |
|
| 69 |
68
|
a1i |
|
| 70 |
|
fzp1disj |
|
| 71 |
70
|
a1i |
|
| 72 |
|
simplr |
|
| 73 |
|
fzssnn |
|
| 74 |
37 73
|
ax-mp |
|
| 75 |
|
simpr |
|
| 76 |
74 75
|
sselid |
|
| 77 |
72 76
|
ffvelcdmd |
|
| 78 |
|
simplr |
|
| 79 |
|
simpr |
|
| 80 |
|
velsn |
|
| 81 |
79 80
|
sylib |
|
| 82 |
|
simpll |
|
| 83 |
82
|
peano2nnd |
|
| 84 |
81 83
|
eqeltrd |
|
| 85 |
78 84
|
ffvelcdmd |
|
| 86 |
61 65 66 67 69 71 77 85
|
esumsplit |
|
| 87 |
|
nfcv |
|
| 88 |
26 87 66 29 31
|
cbvesum |
|
| 89 |
|
simpr |
|
| 90 |
89
|
fveq2d |
|
| 91 |
49
|
peano2nnd |
|
| 92 |
|
simpr |
|
| 93 |
92 91
|
ffvelcdmd |
|
| 94 |
90 91 93
|
esumsn |
|
| 95 |
88 94
|
eqtrid |
|
| 96 |
95
|
oveq2d |
|
| 97 |
64 86 96
|
3eqtrrd |
|
| 98 |
97
|
adantr |
|
| 99 |
54 56 98
|
3eqtr2rd |
|
| 100 |
99
|
exp31 |
|
| 101 |
100
|
a2d |
|
| 102 |
7 13 19 25 48 101
|
nnind |
|
| 103 |
102
|
impcom |
|