Metamath Proof Explorer


Theorem esumfzf

Description: Formulating a partial extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017)

Ref Expression
Hypothesis esumfzf.1 _ k F
Assertion esumfzf F : 0 +∞ N * k = 1 N F k = seq 1 + 𝑒 F N

Proof

Step Hyp Ref Expression
1 esumfzf.1 _ k F
2 nfv k i = 1
3 oveq2 i = 1 1 i = 1 1
4 2 3 esumeq1d i = 1 * k = 1 i F k = * k = 1 1 F k
5 fveq2 i = 1 seq 1 + 𝑒 F i = seq 1 + 𝑒 F 1
6 4 5 eqeq12d i = 1 * k = 1 i F k = seq 1 + 𝑒 F i * k = 1 1 F k = seq 1 + 𝑒 F 1
7 6 imbi2d i = 1 F : 0 +∞ * k = 1 i F k = seq 1 + 𝑒 F i F : 0 +∞ * k = 1 1 F k = seq 1 + 𝑒 F 1
8 nfv k i = n
9 oveq2 i = n 1 i = 1 n
10 8 9 esumeq1d i = n * k = 1 i F k = * k = 1 n F k
11 fveq2 i = n seq 1 + 𝑒 F i = seq 1 + 𝑒 F n
12 10 11 eqeq12d i = n * k = 1 i F k = seq 1 + 𝑒 F i * k = 1 n F k = seq 1 + 𝑒 F n
13 12 imbi2d i = n F : 0 +∞ * k = 1 i F k = seq 1 + 𝑒 F i F : 0 +∞ * k = 1 n F k = seq 1 + 𝑒 F n
14 nfv k i = n + 1
15 oveq2 i = n + 1 1 i = 1 n + 1
16 14 15 esumeq1d i = n + 1 * k = 1 i F k = * k = 1 n + 1 F k
17 fveq2 i = n + 1 seq 1 + 𝑒 F i = seq 1 + 𝑒 F n + 1
18 16 17 eqeq12d i = n + 1 * k = 1 i F k = seq 1 + 𝑒 F i * k = 1 n + 1 F k = seq 1 + 𝑒 F n + 1
19 18 imbi2d i = n + 1 F : 0 +∞ * k = 1 i F k = seq 1 + 𝑒 F i F : 0 +∞ * k = 1 n + 1 F k = seq 1 + 𝑒 F n + 1
20 nfv k i = N
21 oveq2 i = N 1 i = 1 N
22 20 21 esumeq1d i = N * k = 1 i F k = * k = 1 N F k
23 fveq2 i = N seq 1 + 𝑒 F i = seq 1 + 𝑒 F N
24 22 23 eqeq12d i = N * k = 1 i F k = seq 1 + 𝑒 F i * k = 1 N F k = seq 1 + 𝑒 F N
25 24 imbi2d i = N F : 0 +∞ * k = 1 i F k = seq 1 + 𝑒 F i F : 0 +∞ * k = 1 N F k = seq 1 + 𝑒 F N
26 fveq2 k = x F k = F x
27 nfcv _ x 1
28 nfcv _ k 1
29 nfcv _ x F k
30 nfcv _ k x
31 1 30 nffv _ k F x
32 26 27 28 29 31 cbvesum * k 1 F k = * x 1 F x
33 simpr F : 0 +∞ x = 1 x = 1
34 33 fveq2d F : 0 +∞ x = 1 F x = F 1
35 1z 1
36 35 a1i F : 0 +∞ 1
37 1nn 1
38 ffvelrn F : 0 +∞ 1 F 1 0 +∞
39 37 38 mpan2 F : 0 +∞ F 1 0 +∞
40 34 36 39 esumsn F : 0 +∞ * x 1 F x = F 1
41 32 40 syl5eq F : 0 +∞ * k 1 F k = F 1
42 fzsn 1 1 1 = 1
43 35 42 ax-mp 1 1 = 1
44 esumeq1 1 1 = 1 * k = 1 1 F k = * k 1 F k
45 43 44 ax-mp * k = 1 1 F k = * k 1 F k
46 seq1 1 seq 1 + 𝑒 F 1 = F 1
47 35 46 ax-mp seq 1 + 𝑒 F 1 = F 1
48 41 45 47 3eqtr4g F : 0 +∞ * k = 1 1 F k = seq 1 + 𝑒 F 1
49 simpl n F : 0 +∞ n
50 nnuz = 1
51 49 50 eleqtrdi n F : 0 +∞ n 1
52 seqp1 n 1 seq 1 + 𝑒 F n + 1 = seq 1 + 𝑒 F n + 𝑒 F n + 1
53 51 52 syl n F : 0 +∞ seq 1 + 𝑒 F n + 1 = seq 1 + 𝑒 F n + 𝑒 F n + 1
54 53 adantr n F : 0 +∞ * k = 1 n F k = seq 1 + 𝑒 F n seq 1 + 𝑒 F n + 1 = seq 1 + 𝑒 F n + 𝑒 F n + 1
55 simpr n F : 0 +∞ * k = 1 n F k = seq 1 + 𝑒 F n * k = 1 n F k = seq 1 + 𝑒 F n
56 55 oveq1d n F : 0 +∞ * k = 1 n F k = seq 1 + 𝑒 F n * k = 1 n F k + 𝑒 F n + 1 = seq 1 + 𝑒 F n + 𝑒 F n + 1
57 nfv k n
58 57 nfci _ k
59 nfcv _ k 0 +∞
60 1 58 59 nff k F : 0 +∞
61 57 60 nfan k n F : 0 +∞
62 fzsuc n 1 1 n + 1 = 1 n n + 1
63 51 62 syl n F : 0 +∞ 1 n + 1 = 1 n n + 1
64 61 63 esumeq1d n F : 0 +∞ * k = 1 n + 1 F k = * k 1 n n + 1 F k
65 nfcv _ k 1 n
66 nfcv _ k n + 1
67 ovexd n F : 0 +∞ 1 n V
68 snex n + 1 V
69 68 a1i n F : 0 +∞ n + 1 V
70 fzp1disj 1 n n + 1 =
71 70 a1i n F : 0 +∞ 1 n n + 1 =
72 simplr n F : 0 +∞ k 1 n F : 0 +∞
73 fzssnn 1 1 n
74 37 73 ax-mp 1 n
75 simpr n F : 0 +∞ k 1 n k 1 n
76 74 75 sselid n F : 0 +∞ k 1 n k
77 72 76 ffvelrnd n F : 0 +∞ k 1 n F k 0 +∞
78 simplr n F : 0 +∞ k n + 1 F : 0 +∞
79 simpr n F : 0 +∞ k n + 1 k n + 1
80 velsn k n + 1 k = n + 1
81 79 80 sylib n F : 0 +∞ k n + 1 k = n + 1
82 simpll n F : 0 +∞ k n + 1 n
83 82 peano2nnd n F : 0 +∞ k n + 1 n + 1
84 81 83 eqeltrd n F : 0 +∞ k n + 1 k
85 78 84 ffvelrnd n F : 0 +∞ k n + 1 F k 0 +∞
86 61 65 66 67 69 71 77 85 esumsplit n F : 0 +∞ * k 1 n n + 1 F k = * k = 1 n F k + 𝑒 * k n + 1 F k
87 nfcv _ x n + 1
88 26 87 66 29 31 cbvesum * k n + 1 F k = * x n + 1 F x
89 simpr n F : 0 +∞ x = n + 1 x = n + 1
90 89 fveq2d n F : 0 +∞ x = n + 1 F x = F n + 1
91 49 peano2nnd n F : 0 +∞ n + 1
92 simpr n F : 0 +∞ F : 0 +∞
93 92 91 ffvelrnd n F : 0 +∞ F n + 1 0 +∞
94 90 91 93 esumsn n F : 0 +∞ * x n + 1 F x = F n + 1
95 88 94 syl5eq n F : 0 +∞ * k n + 1 F k = F n + 1
96 95 oveq2d n F : 0 +∞ * k = 1 n F k + 𝑒 * k n + 1 F k = * k = 1 n F k + 𝑒 F n + 1
97 64 86 96 3eqtrrd n F : 0 +∞ * k = 1 n F k + 𝑒 F n + 1 = * k = 1 n + 1 F k
98 97 adantr n F : 0 +∞ * k = 1 n F k = seq 1 + 𝑒 F n * k = 1 n F k + 𝑒 F n + 1 = * k = 1 n + 1 F k
99 54 56 98 3eqtr2rd n F : 0 +∞ * k = 1 n F k = seq 1 + 𝑒 F n * k = 1 n + 1 F k = seq 1 + 𝑒 F n + 1
100 99 exp31 n F : 0 +∞ * k = 1 n F k = seq 1 + 𝑒 F n * k = 1 n + 1 F k = seq 1 + 𝑒 F n + 1
101 100 a2d n F : 0 +∞ * k = 1 n F k = seq 1 + 𝑒 F n F : 0 +∞ * k = 1 n + 1 F k = seq 1 + 𝑒 F n + 1
102 7 13 19 25 48 101 nnind N F : 0 +∞ * k = 1 N F k = seq 1 + 𝑒 F N
103 102 impcom F : 0 +∞ N * k = 1 N F k = seq 1 + 𝑒 F N