| Step | Hyp | Ref | Expression | 
						
							| 1 |  | esumfsup.1 | ⊢ Ⅎ 𝑘 𝐹 | 
						
							| 2 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 3 |  | seqfn | ⊢ ( 1  ∈  ℤ  →  seq 1 (  +𝑒  ,  𝐹 )  Fn  ( ℤ≥ ‘ 1 ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ seq 1 (  +𝑒  ,  𝐹 )  Fn  ( ℤ≥ ‘ 1 ) | 
						
							| 5 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 6 | 5 | fneq2i | ⊢ ( seq 1 (  +𝑒  ,  𝐹 )  Fn  ℕ  ↔  seq 1 (  +𝑒  ,  𝐹 )  Fn  ( ℤ≥ ‘ 1 ) ) | 
						
							| 7 | 4 6 | mpbir | ⊢ seq 1 (  +𝑒  ,  𝐹 )  Fn  ℕ | 
						
							| 8 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 9 | 1 | esumfzf | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  =  ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 10 |  | ovex | ⊢ ( 1 ... 𝑛 )  ∈  V | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑘 ℕ | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑘 ( 0 [,] +∞ ) | 
						
							| 13 | 1 11 12 | nff | ⊢ Ⅎ 𝑘 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) | 
						
							| 14 |  | nfv | ⊢ Ⅎ 𝑘 𝑛  ∈  ℕ | 
						
							| 15 | 13 14 | nfan | ⊢ Ⅎ 𝑘 ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ ) | 
						
							| 16 |  | simpll | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 17 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 18 |  | fzssnn | ⊢ ( 1  ∈  ℕ  →  ( 1 ... 𝑛 )  ⊆  ℕ ) | 
						
							| 19 | 17 18 | mp1i | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 1 ... 𝑛 )  ⊆  ℕ ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 21 | 19 20 | sseldd | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 22 | 16 21 | ffvelcdmd | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 23 | 22 | ex | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ∈  ( 1 ... 𝑛 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 24 | 15 23 | ralrimi | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑘 ( 1 ... 𝑛 ) | 
						
							| 26 | 25 | esumcl | ⊢ ( ( ( 1 ... 𝑛 )  ∈  V  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) )  →  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 27 | 10 24 26 | sylancr | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 28 | 9 27 | eqeltrrd | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 29 | 8 28 | sselid | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 )  ∈  ℝ* ) | 
						
							| 30 | 29 | ralrimiva | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  ∀ 𝑛  ∈  ℕ ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 )  ∈  ℝ* ) | 
						
							| 31 |  | fnfvrnss | ⊢ ( ( seq 1 (  +𝑒  ,  𝐹 )  Fn  ℕ  ∧  ∀ 𝑛  ∈  ℕ ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 )  ∈  ℝ* )  →  ran  seq 1 (  +𝑒  ,  𝐹 )  ⊆  ℝ* ) | 
						
							| 32 | 7 30 31 | sylancr | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  ran  seq 1 (  +𝑒  ,  𝐹 )  ⊆  ℝ* ) | 
						
							| 33 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 34 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 35 | 34 | ex | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  ( 𝑘  ∈  ℕ  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 36 | 13 35 | ralrimi | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  ∀ 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 37 | 11 | esumcl | ⊢ ( ( ℕ  ∈  V  ∧  ∀ 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) )  →  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 38 | 33 36 37 | sylancr | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 39 | 8 38 | sselid | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 40 |  | fvelrnb | ⊢ ( seq 1 (  +𝑒  ,  𝐹 )  Fn  ℕ  →  ( 𝑥  ∈  ran  seq 1 (  +𝑒  ,  𝐹 )  ↔  ∃ 𝑛  ∈  ℕ ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 )  =  𝑥 ) ) | 
						
							| 41 | 7 40 | mp1i | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  ( 𝑥  ∈  ran  seq 1 (  +𝑒  ,  𝐹 )  ↔  ∃ 𝑛  ∈  ℕ ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 )  =  𝑥 ) ) | 
						
							| 42 |  | eqcom | ⊢ ( Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  =  𝑥  ↔  𝑥  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 43 | 9 | eqeq1d | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ( Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  =  𝑥  ↔  ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 )  =  𝑥 ) ) | 
						
							| 44 | 42 43 | bitr3id | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ↔  ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 )  =  𝑥 ) ) | 
						
							| 45 | 44 | rexbidva | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  ( ∃ 𝑛  ∈  ℕ 𝑥  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ↔  ∃ 𝑛  ∈  ℕ ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 )  =  𝑥 ) ) | 
						
							| 46 | 41 45 | bitr4d | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  ( 𝑥  ∈  ran  seq 1 (  +𝑒  ,  𝐹 )  ↔  ∃ 𝑛  ∈  ℕ 𝑥  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 47 | 46 | biimpa | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ran  seq 1 (  +𝑒  ,  𝐹 ) )  →  ∃ 𝑛  ∈  ℕ 𝑥  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 48 | 33 | a1i | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ℕ  ∈  V ) | 
						
							| 49 | 34 | adantlr | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 50 | 17 18 | mp1i | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ( 1 ... 𝑛 )  ⊆  ℕ ) | 
						
							| 51 | 15 48 49 50 | esummono | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 52 | 51 | ralrimiva | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  ∀ 𝑛  ∈  ℕ Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ran  seq 1 (  +𝑒  ,  𝐹 ) )  →  ∀ 𝑛  ∈  ℕ Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 54 | 47 53 | jca | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ran  seq 1 (  +𝑒  ,  𝐹 ) )  →  ( ∃ 𝑛  ∈  ℕ 𝑥  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∧  ∀ 𝑛  ∈  ℕ Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 55 |  | r19.29r | ⊢ ( ( ∃ 𝑛  ∈  ℕ 𝑥  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∧  ∀ 𝑛  ∈  ℕ Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑛  ∈  ℕ ( 𝑥  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∧  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 56 |  | breq1 | ⊢ ( 𝑥  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  →  ( 𝑥  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  ↔  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 57 | 56 | biimpar | ⊢ ( ( 𝑥  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∧  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  →  𝑥  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 58 | 57 | rexlimivw | ⊢ ( ∃ 𝑛  ∈  ℕ ( 𝑥  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∧  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  →  𝑥  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 59 | 54 55 58 | 3syl | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ran  seq 1 (  +𝑒  ,  𝐹 ) )  →  𝑥  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 60 | 59 | ralrimiva | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  ∀ 𝑥  ∈  ran  seq 1 (  +𝑒  ,  𝐹 ) 𝑥  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 61 |  | nfv | ⊢ Ⅎ 𝑘 𝑥  ∈  ℝ | 
						
							| 62 | 13 61 | nfan | ⊢ Ⅎ 𝑘 ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ ) | 
						
							| 63 |  | nfcv | ⊢ Ⅎ 𝑘 𝑥 | 
						
							| 64 |  | nfcv | ⊢ Ⅎ 𝑘  < | 
						
							| 65 | 11 | nfesum1 | ⊢ Ⅎ 𝑘 Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) | 
						
							| 66 | 63 64 65 | nfbr | ⊢ Ⅎ 𝑘 𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) | 
						
							| 67 | 62 66 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 68 | 33 | a1i | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  →  ℕ  ∈  V ) | 
						
							| 69 |  | simplll | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑘  ∈  ℕ )  →  𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 70 | 69 34 | sylancom | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 71 |  | simplr | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 72 | 71 | rexrd | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  →  𝑥  ∈  ℝ* ) | 
						
							| 73 |  | simpr | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  →  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 74 | 67 68 70 72 73 | esumlub | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) 𝑥  <  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 75 |  | ssnnssfz | ⊢ ( 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin )  →  ∃ 𝑛  ∈  ℕ 𝑎  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 76 |  | r19.42v | ⊢ ( ∃ 𝑛  ∈  ℕ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ⊆  ( 1 ... 𝑛 ) )  ↔  ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  ∃ 𝑛  ∈  ℕ 𝑎  ⊆  ( 1 ... 𝑛 ) ) ) | 
						
							| 77 |  | nfv | ⊢ Ⅎ 𝑘 𝑎  ⊆  ( 1 ... 𝑛 ) | 
						
							| 78 | 67 77 | nfan | ⊢ Ⅎ 𝑘 ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 79 | 10 | a1i | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ⊆  ( 1 ... 𝑛 ) )  →  ( 1 ... 𝑛 )  ∈  V ) | 
						
							| 80 |  | simp-4l | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ⊆  ( 1 ... 𝑛 ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 81 | 17 18 | ax-mp | ⊢ ( 1 ... 𝑛 )  ⊆  ℕ | 
						
							| 82 |  | simpr | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ⊆  ( 1 ... 𝑛 ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 83 | 81 82 | sselid | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ⊆  ( 1 ... 𝑛 ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 84 | 80 83 | ffvelcdmd | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ⊆  ( 1 ... 𝑛 ) )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 85 |  | simpr | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ⊆  ( 1 ... 𝑛 ) )  →  𝑎  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 86 | 78 79 84 85 | esummono | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ⊆  ( 1 ... 𝑛 ) )  →  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 87 | 86 | reximi | ⊢ ( ∃ 𝑛  ∈  ℕ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ⊆  ( 1 ... 𝑛 ) )  →  ∃ 𝑛  ∈  ℕ Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 88 | 76 87 | sylbir | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  ∃ 𝑛  ∈  ℕ 𝑎  ⊆  ( 1 ... 𝑛 ) )  →  ∃ 𝑛  ∈  ℕ Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 89 | 75 88 | sylan2 | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  →  ∃ 𝑛  ∈  ℕ Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 90 | 89 | ralrimiva | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  →  ∀ 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) ∃ 𝑛  ∈  ℕ Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 91 |  | r19.29r | ⊢ ( ( ∃ 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) 𝑥  <  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∧  ∀ 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) ∃ 𝑛  ∈  ℕ Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) ( 𝑥  <  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∧  ∃ 𝑛  ∈  ℕ Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 92 |  | r19.42v | ⊢ ( ∃ 𝑛  ∈  ℕ ( 𝑥  <  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∧  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) )  ↔  ( 𝑥  <  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∧  ∃ 𝑛  ∈  ℕ Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 93 | 92 | rexbii | ⊢ ( ∃ 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) ∃ 𝑛  ∈  ℕ ( 𝑥  <  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∧  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) )  ↔  ∃ 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) ( 𝑥  <  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∧  ∃ 𝑛  ∈  ℕ Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 94 | 91 93 | sylibr | ⊢ ( ( ∃ 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) 𝑥  <  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∧  ∀ 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) ∃ 𝑛  ∈  ℕ Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) ∃ 𝑛  ∈  ℕ ( 𝑥  <  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∧  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 95 | 74 90 94 | syl2anc | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) ∃ 𝑛  ∈  ℕ ( 𝑥  <  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∧  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 96 |  | simp-4r | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  ℝ ) | 
						
							| 97 | 96 | rexrd | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  →  𝑥  ∈  ℝ* ) | 
						
							| 98 |  | vex | ⊢ 𝑎  ∈  V | 
						
							| 99 |  | nfcv | ⊢ Ⅎ 𝑘 𝑎 | 
						
							| 100 | 99 | nfel1 | ⊢ Ⅎ 𝑘 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) | 
						
							| 101 | 67 100 | nfan | ⊢ Ⅎ 𝑘 ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) ) | 
						
							| 102 | 101 14 | nfan | ⊢ Ⅎ 𝑘 ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ ) | 
						
							| 103 |  | simp-5l | ⊢ ( ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑎 )  →  𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 104 |  | simpllr | ⊢ ( ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑎 )  →  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) ) | 
						
							| 105 |  | inss1 | ⊢ ( 𝒫  ℕ  ∩  Fin )  ⊆  𝒫  ℕ | 
						
							| 106 | 105 | sseli | ⊢ ( 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin )  →  𝑎  ∈  𝒫  ℕ ) | 
						
							| 107 |  | elpwi | ⊢ ( 𝑎  ∈  𝒫  ℕ  →  𝑎  ⊆  ℕ ) | 
						
							| 108 | 104 106 107 | 3syl | ⊢ ( ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑎 )  →  𝑎  ⊆  ℕ ) | 
						
							| 109 |  | simpr | ⊢ ( ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑎 )  →  𝑘  ∈  𝑎 ) | 
						
							| 110 | 108 109 | sseldd | ⊢ ( ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑎 )  →  𝑘  ∈  ℕ ) | 
						
							| 111 | 103 110 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  𝑎 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 112 | 111 | ex | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ∈  𝑎  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 113 | 102 112 | ralrimi | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  →  ∀ 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 114 | 99 | esumcl | ⊢ ( ( 𝑎  ∈  V  ∧  ∀ 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) )  →  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 115 | 98 113 114 | sylancr | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  →  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 116 | 8 115 | sselid | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  →  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 117 |  | simp-5l | ⊢ ( ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 118 |  | simpr | ⊢ ( ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 119 | 81 118 | sselid | ⊢ ( ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 120 | 117 119 | ffvelcdmd | ⊢ ( ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  ∈  ( 1 ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 121 | 120 | ex | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑘  ∈  ( 1 ... 𝑛 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 122 | 102 121 | ralrimi | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  →  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 123 | 10 122 26 | sylancr | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  →  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 124 | 8 123 | sselid | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  →  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 125 |  | xrltletr | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∈  ℝ*  ∧  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ∈  ℝ* )  →  ( ( 𝑥  <  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∧  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) )  →  𝑥  <  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 126 | 97 116 124 125 | syl3anc | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑥  <  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∧  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) )  →  𝑥  <  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 127 | 126 | reximdva | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  ∧  𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) )  →  ( ∃ 𝑛  ∈  ℕ ( 𝑥  <  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∧  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑛  ∈  ℕ 𝑥  <  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 128 | 127 | rexlimdva | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  →  ( ∃ 𝑎  ∈  ( 𝒫  ℕ  ∩  Fin ) ∃ 𝑛  ∈  ℕ ( 𝑥  <  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ∧  Σ* 𝑘  ∈  𝑎 ( 𝐹 ‘ 𝑘 )  ≤  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑛  ∈  ℕ 𝑥  <  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 129 | 95 128 | mpd | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑛  ∈  ℕ 𝑥  <  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 130 |  | fvelrnb | ⊢ ( seq 1 (  +𝑒  ,  𝐹 )  Fn  ℕ  →  ( 𝑦  ∈  ran  seq 1 (  +𝑒  ,  𝐹 )  ↔  ∃ 𝑛  ∈  ℕ ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 )  =  𝑦 ) ) | 
						
							| 131 | 7 130 | mp1i | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  ( 𝑦  ∈  ran  seq 1 (  +𝑒  ,  𝐹 )  ↔  ∃ 𝑛  ∈  ℕ ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 )  =  𝑦 ) ) | 
						
							| 132 |  | eqcom | ⊢ ( Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  =  𝑦  ↔  𝑦  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 133 | 9 | eqeq1d | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ( Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  =  𝑦  ↔  ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 )  =  𝑦 ) ) | 
						
							| 134 | 132 133 | bitr3id | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑛  ∈  ℕ )  →  ( 𝑦  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ↔  ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 )  =  𝑦 ) ) | 
						
							| 135 | 134 | rexbidva | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  ( ∃ 𝑛  ∈  ℕ 𝑦  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 )  ↔  ∃ 𝑛  ∈  ℕ ( seq 1 (  +𝑒  ,  𝐹 ) ‘ 𝑛 )  =  𝑦 ) ) | 
						
							| 136 | 131 135 | bitr4d | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  ( 𝑦  ∈  ran  seq 1 (  +𝑒  ,  𝐹 )  ↔  ∃ 𝑛  ∈  ℕ 𝑦  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 137 |  | simpr | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑦  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) )  →  𝑦  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 138 | 137 | breq2d | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑦  =  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) )  →  ( 𝑥  <  𝑦  ↔  𝑥  <  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 139 | 27 136 138 | rexxfr2d | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  ( ∃ 𝑦  ∈  ran  seq 1 (  +𝑒  ,  𝐹 ) 𝑥  <  𝑦  ↔  ∃ 𝑛  ∈  ℕ 𝑥  <  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 140 | 139 | ad2antrr | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  →  ( ∃ 𝑦  ∈  ran  seq 1 (  +𝑒  ,  𝐹 ) 𝑥  <  𝑦  ↔  ∃ 𝑛  ∈  ℕ 𝑥  <  Σ* 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 141 | 129 140 | mpbird | ⊢ ( ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  ∧  𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) )  →  ∃ 𝑦  ∈  ran  seq 1 (  +𝑒  ,  𝐹 ) 𝑥  <  𝑦 ) | 
						
							| 142 | 141 | ex | ⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  →  ∃ 𝑦  ∈  ran  seq 1 (  +𝑒  ,  𝐹 ) 𝑥  <  𝑦 ) ) | 
						
							| 143 | 142 | ralrimiva | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  ∀ 𝑥  ∈  ℝ ( 𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  →  ∃ 𝑦  ∈  ran  seq 1 (  +𝑒  ,  𝐹 ) 𝑥  <  𝑦 ) ) | 
						
							| 144 |  | supxr2 | ⊢ ( ( ( ran  seq 1 (  +𝑒  ,  𝐹 )  ⊆  ℝ*  ∧  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  ∈  ℝ* )  ∧  ( ∀ 𝑥  ∈  ran  seq 1 (  +𝑒  ,  𝐹 ) 𝑥  ≤  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  ∧  ∀ 𝑥  ∈  ℝ ( 𝑥  <  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  →  ∃ 𝑦  ∈  ran  seq 1 (  +𝑒  ,  𝐹 ) 𝑥  <  𝑦 ) ) )  →  sup ( ran  seq 1 (  +𝑒  ,  𝐹 ) ,  ℝ* ,   <  )  =  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 145 | 32 39 60 143 144 | syl22anc | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  sup ( ran  seq 1 (  +𝑒  ,  𝐹 ) ,  ℝ* ,   <  )  =  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 146 | 145 | eqcomd | ⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ )  →  Σ* 𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  =  sup ( ran  seq 1 (  +𝑒  ,  𝐹 ) ,  ℝ* ,   <  ) ) |