Step |
Hyp |
Ref |
Expression |
1 |
|
esumfsup.1 |
⊢ Ⅎ 𝑘 𝐹 |
2 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
3 |
|
fss |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) |
4 |
2 3
|
mpan2 |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) → 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) ) |
5 |
1
|
esumfsup |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = sup ( ran seq 1 ( +𝑒 , 𝐹 ) , ℝ* , < ) ) |
6 |
4 5
|
syl |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) → Σ* 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = sup ( ran seq 1 ( +𝑒 , 𝐹 ) , ℝ* , < ) ) |
7 |
|
1zzd |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) → 1 ∈ ℤ ) |
8 |
|
elnnuz |
⊢ ( 𝑥 ∈ ℕ ↔ 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) |
9 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ 𝑥 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
10 |
8 9
|
sylan2br |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
11 |
|
ge0addcl |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
13 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
14 |
|
simprl |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → 𝑥 ∈ ( 0 [,) +∞ ) ) |
15 |
13 14
|
sselid |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → 𝑥 ∈ ℝ ) |
16 |
|
simprr |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → 𝑦 ∈ ( 0 [,) +∞ ) ) |
17 |
13 16
|
sselid |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → 𝑦 ∈ ℝ ) |
18 |
|
rexadd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 +𝑒 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
19 |
18
|
eqcomd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) = ( 𝑥 +𝑒 𝑦 ) ) |
20 |
15 17 19
|
syl2anc |
⊢ ( ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 +𝑒 𝑦 ) ) |
21 |
7 10 12 20
|
seqfeq3 |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) → seq 1 ( + , 𝐹 ) = seq 1 ( +𝑒 , 𝐹 ) ) |
22 |
21
|
rneqd |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) → ran seq 1 ( + , 𝐹 ) = ran seq 1 ( +𝑒 , 𝐹 ) ) |
23 |
22
|
supeq1d |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) → sup ( ran seq 1 ( + , 𝐹 ) , ℝ* , < ) = sup ( ran seq 1 ( +𝑒 , 𝐹 ) , ℝ* , < ) ) |
24 |
6 23
|
eqtr4d |
⊢ ( 𝐹 : ℕ ⟶ ( 0 [,) +∞ ) → Σ* 𝑘 ∈ ℕ ( 𝐹 ‘ 𝑘 ) = sup ( ran seq 1 ( + , 𝐹 ) , ℝ* , < ) ) |