| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumfsup.1 |
|- F/_ k F |
| 2 |
|
icossicc |
|- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
| 3 |
|
fss |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> F : NN --> ( 0 [,] +oo ) ) |
| 4 |
2 3
|
mpan2 |
|- ( F : NN --> ( 0 [,) +oo ) -> F : NN --> ( 0 [,] +oo ) ) |
| 5 |
1
|
esumfsup |
|- ( F : NN --> ( 0 [,] +oo ) -> sum* k e. NN ( F ` k ) = sup ( ran seq 1 ( +e , F ) , RR* , < ) ) |
| 6 |
4 5
|
syl |
|- ( F : NN --> ( 0 [,) +oo ) -> sum* k e. NN ( F ` k ) = sup ( ran seq 1 ( +e , F ) , RR* , < ) ) |
| 7 |
|
1zzd |
|- ( F : NN --> ( 0 [,) +oo ) -> 1 e. ZZ ) |
| 8 |
|
elnnuz |
|- ( x e. NN <-> x e. ( ZZ>= ` 1 ) ) |
| 9 |
|
ffvelcdm |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ x e. NN ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
| 10 |
8 9
|
sylan2br |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ x e. ( ZZ>= ` 1 ) ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
| 11 |
|
ge0addcl |
|- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x + y ) e. ( 0 [,) +oo ) ) |
| 12 |
11
|
adantl |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x + y ) e. ( 0 [,) +oo ) ) |
| 13 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 14 |
|
simprl |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> x e. ( 0 [,) +oo ) ) |
| 15 |
13 14
|
sselid |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> x e. RR ) |
| 16 |
|
simprr |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> y e. ( 0 [,) +oo ) ) |
| 17 |
13 16
|
sselid |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> y e. RR ) |
| 18 |
|
rexadd |
|- ( ( x e. RR /\ y e. RR ) -> ( x +e y ) = ( x + y ) ) |
| 19 |
18
|
eqcomd |
|- ( ( x e. RR /\ y e. RR ) -> ( x + y ) = ( x +e y ) ) |
| 20 |
15 17 19
|
syl2anc |
|- ( ( F : NN --> ( 0 [,) +oo ) /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x + y ) = ( x +e y ) ) |
| 21 |
7 10 12 20
|
seqfeq3 |
|- ( F : NN --> ( 0 [,) +oo ) -> seq 1 ( + , F ) = seq 1 ( +e , F ) ) |
| 22 |
21
|
rneqd |
|- ( F : NN --> ( 0 [,) +oo ) -> ran seq 1 ( + , F ) = ran seq 1 ( +e , F ) ) |
| 23 |
22
|
supeq1d |
|- ( F : NN --> ( 0 [,) +oo ) -> sup ( ran seq 1 ( + , F ) , RR* , < ) = sup ( ran seq 1 ( +e , F ) , RR* , < ) ) |
| 24 |
6 23
|
eqtr4d |
|- ( F : NN --> ( 0 [,) +oo ) -> sum* k e. NN ( F ` k ) = sup ( ran seq 1 ( + , F ) , RR* , < ) ) |