Step |
Hyp |
Ref |
Expression |
1 |
|
esumss.p |
|- F/ k ph |
2 |
|
esumss.a |
|- F/_ k A |
3 |
|
esumss.b |
|- F/_ k B |
4 |
|
esumss.1 |
|- ( ph -> A C_ B ) |
5 |
|
esumss.2 |
|- ( ph -> B e. V ) |
6 |
|
esumss.3 |
|- ( ( ph /\ k e. B ) -> C e. ( 0 [,] +oo ) ) |
7 |
|
esumss.4 |
|- ( ( ph /\ k e. ( B \ A ) ) -> C = 0 ) |
8 |
3 2
|
resmptf |
|- ( A C_ B -> ( ( k e. B |-> C ) |` A ) = ( k e. A |-> C ) ) |
9 |
4 8
|
syl |
|- ( ph -> ( ( k e. B |-> C ) |` A ) = ( k e. A |-> C ) ) |
10 |
9
|
oveq2d |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( ( k e. B |-> C ) |` A ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) ) |
11 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
12 |
|
xrge00 |
|- 0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
13 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
14 |
13
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
15 |
|
xrge0tps |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp |
16 |
15
|
a1i |
|- ( ph -> ( RR*s |`s ( 0 [,] +oo ) ) e. TopSp ) |
17 |
|
nfcv |
|- F/_ k ( 0 [,] +oo ) |
18 |
|
eqid |
|- ( k e. B |-> C ) = ( k e. B |-> C ) |
19 |
1 3 17 6 18
|
fmptdF |
|- ( ph -> ( k e. B |-> C ) : B --> ( 0 [,] +oo ) ) |
20 |
1 3 2 7 5
|
suppss2f |
|- ( ph -> ( ( k e. B |-> C ) supp 0 ) C_ A ) |
21 |
11 12 14 16 5 19 20
|
tsmsres |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( ( k e. B |-> C ) |` A ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. B |-> C ) ) ) |
22 |
10 21
|
eqtr3d |
|- ( ph -> ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. B |-> C ) ) ) |
23 |
22
|
unieqd |
|- ( ph -> U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. B |-> C ) ) ) |
24 |
|
df-esum |
|- sum* k e. A C = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> C ) ) |
25 |
|
df-esum |
|- sum* k e. B C = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. B |-> C ) ) |
26 |
23 24 25
|
3eqtr4g |
|- ( ph -> sum* k e. A C = sum* k e. B C ) |