| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumss.p |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
esumss.a |
⊢ Ⅎ 𝑘 𝐴 |
| 3 |
|
esumss.b |
⊢ Ⅎ 𝑘 𝐵 |
| 4 |
|
esumss.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 5 |
|
esumss.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 6 |
|
esumss.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 7 |
|
esumss.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) |
| 8 |
3 2
|
resmptf |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) |
| 11 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 12 |
|
xrge00 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 13 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
| 15 |
|
xrge0tps |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp ) |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 0 [,] +∞ ) |
| 18 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) |
| 19 |
1 3 17 6 18
|
fmptdF |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
| 20 |
1 3 2 7 5
|
suppss2f |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) supp 0 ) ⊆ 𝐴 ) |
| 21 |
11 12 14 16 5 19 20
|
tsmsres |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 22 |
10 21
|
eqtr3d |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 23 |
22
|
unieqd |
⊢ ( 𝜑 → ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
| 24 |
|
df-esum |
⊢ Σ* 𝑘 ∈ 𝐴 𝐶 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
| 25 |
|
df-esum |
⊢ Σ* 𝑘 ∈ 𝐵 𝐶 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) |
| 26 |
23 24 25
|
3eqtr4g |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 = Σ* 𝑘 ∈ 𝐵 𝐶 ) |