Step |
Hyp |
Ref |
Expression |
1 |
|
esumss.p |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
esumss.a |
⊢ Ⅎ 𝑘 𝐴 |
3 |
|
esumss.b |
⊢ Ⅎ 𝑘 𝐵 |
4 |
|
esumss.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
5 |
|
esumss.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
6 |
|
esumss.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
7 |
|
esumss.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) |
8 |
3 2
|
resmptf |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) ) |
11 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
12 |
|
xrge00 |
⊢ 0 = ( 0g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
13 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
15 |
|
xrge0tps |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopSp ) |
17 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 0 [,] +∞ ) |
18 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) |
19 |
1 3 17 6 18
|
fmptdF |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
20 |
1 3 2 7 5
|
suppss2f |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) supp 0 ) ⊆ 𝐴 ) |
21 |
11 12 14 16 5 19 20
|
tsmsres |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
22 |
10 21
|
eqtr3d |
⊢ ( 𝜑 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
23 |
22
|
unieqd |
⊢ ( 𝜑 → ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) ) |
24 |
|
df-esum |
⊢ Σ* 𝑘 ∈ 𝐴 𝐶 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
25 |
|
df-esum |
⊢ Σ* 𝑘 ∈ 𝐵 𝐶 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ) |
26 |
23 24 25
|
3eqtr4g |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 = Σ* 𝑘 ∈ 𝐵 𝐶 ) |