Metamath Proof Explorer


Theorem esumpinfval

Description: The value of the extended sum of nonnegative terms, with at least one infinite term. (Contributed by Thierry Arnoux, 19-Jun-2017)

Ref Expression
Hypotheses esumpinfval.0 𝑘 𝜑
esumpinfval.1 ( 𝜑𝐴𝑉 )
esumpinfval.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
esumpinfval.3 ( 𝜑 → ∃ 𝑘𝐴 𝐵 = +∞ )
Assertion esumpinfval ( 𝜑 → Σ* 𝑘𝐴 𝐵 = +∞ )

Proof

Step Hyp Ref Expression
1 esumpinfval.0 𝑘 𝜑
2 esumpinfval.1 ( 𝜑𝐴𝑉 )
3 esumpinfval.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
4 esumpinfval.3 ( 𝜑 → ∃ 𝑘𝐴 𝐵 = +∞ )
5 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
6 3 ex ( 𝜑 → ( 𝑘𝐴𝐵 ∈ ( 0 [,] +∞ ) ) )
7 1 6 ralrimi ( 𝜑 → ∀ 𝑘𝐴 𝐵 ∈ ( 0 [,] +∞ ) )
8 nfcv 𝑘 𝐴
9 8 esumcl ( ( 𝐴𝑉 ∧ ∀ 𝑘𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘𝐴 𝐵 ∈ ( 0 [,] +∞ ) )
10 2 7 9 syl2anc ( 𝜑 → Σ* 𝑘𝐴 𝐵 ∈ ( 0 [,] +∞ ) )
11 5 10 sseldi ( 𝜑 → Σ* 𝑘𝐴 𝐵 ∈ ℝ* )
12 nfrab1 𝑘 { 𝑘𝐴𝐵 = +∞ }
13 ssrab2 { 𝑘𝐴𝐵 = +∞ } ⊆ 𝐴
14 13 a1i ( 𝜑 → { 𝑘𝐴𝐵 = +∞ } ⊆ 𝐴 )
15 0xr 0 ∈ ℝ*
16 pnfxr +∞ ∈ ℝ*
17 0lepnf 0 ≤ +∞
18 ubicc2 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → +∞ ∈ ( 0 [,] +∞ ) )
19 15 16 17 18 mp3an +∞ ∈ ( 0 [,] +∞ )
20 19 a1i ( ( ( 𝜑𝑘𝐴 ) ∧ 𝐵 = +∞ ) → +∞ ∈ ( 0 [,] +∞ ) )
21 0e0iccpnf 0 ∈ ( 0 [,] +∞ )
22 21 a1i ( ( ( 𝜑𝑘𝐴 ) ∧ ¬ 𝐵 = +∞ ) → 0 ∈ ( 0 [,] +∞ ) )
23 20 22 ifclda ( ( 𝜑𝑘𝐴 ) → if ( 𝐵 = +∞ , +∞ , 0 ) ∈ ( 0 [,] +∞ ) )
24 eldif ( 𝑘 ∈ ( 𝐴 ∖ { 𝑘𝐴𝐵 = +∞ } ) ↔ ( 𝑘𝐴 ∧ ¬ 𝑘 ∈ { 𝑘𝐴𝐵 = +∞ } ) )
25 rabid ( 𝑘 ∈ { 𝑘𝐴𝐵 = +∞ } ↔ ( 𝑘𝐴𝐵 = +∞ ) )
26 25 simplbi2 ( 𝑘𝐴 → ( 𝐵 = +∞ → 𝑘 ∈ { 𝑘𝐴𝐵 = +∞ } ) )
27 26 con3dimp ( ( 𝑘𝐴 ∧ ¬ 𝑘 ∈ { 𝑘𝐴𝐵 = +∞ } ) → ¬ 𝐵 = +∞ )
28 24 27 sylbi ( 𝑘 ∈ ( 𝐴 ∖ { 𝑘𝐴𝐵 = +∞ } ) → ¬ 𝐵 = +∞ )
29 28 adantl ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ { 𝑘𝐴𝐵 = +∞ } ) ) → ¬ 𝐵 = +∞ )
30 29 iffalsed ( ( 𝜑𝑘 ∈ ( 𝐴 ∖ { 𝑘𝐴𝐵 = +∞ } ) ) → if ( 𝐵 = +∞ , +∞ , 0 ) = 0 )
31 1 12 8 14 2 23 30 esumss ( 𝜑 → Σ* 𝑘 ∈ { 𝑘𝐴𝐵 = +∞ } if ( 𝐵 = +∞ , +∞ , 0 ) = Σ* 𝑘𝐴 if ( 𝐵 = +∞ , +∞ , 0 ) )
32 eqidd ( 𝜑 → { 𝑘𝐴𝐵 = +∞ } = { 𝑘𝐴𝐵 = +∞ } )
33 25 simprbi ( 𝑘 ∈ { 𝑘𝐴𝐵 = +∞ } → 𝐵 = +∞ )
34 33 iftrued ( 𝑘 ∈ { 𝑘𝐴𝐵 = +∞ } → if ( 𝐵 = +∞ , +∞ , 0 ) = +∞ )
35 34 adantl ( ( 𝜑𝑘 ∈ { 𝑘𝐴𝐵 = +∞ } ) → if ( 𝐵 = +∞ , +∞ , 0 ) = +∞ )
36 1 32 35 esumeq12dvaf ( 𝜑 → Σ* 𝑘 ∈ { 𝑘𝐴𝐵 = +∞ } if ( 𝐵 = +∞ , +∞ , 0 ) = Σ* 𝑘 ∈ { 𝑘𝐴𝐵 = +∞ } +∞ )
37 2 14 ssexd ( 𝜑 → { 𝑘𝐴𝐵 = +∞ } ∈ V )
38 nfcv 𝑘 +∞
39 12 38 esumcst ( ( { 𝑘𝐴𝐵 = +∞ } ∈ V ∧ +∞ ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ { 𝑘𝐴𝐵 = +∞ } +∞ = ( ( ♯ ‘ { 𝑘𝐴𝐵 = +∞ } ) ·e +∞ ) )
40 37 19 39 sylancl ( 𝜑 → Σ* 𝑘 ∈ { 𝑘𝐴𝐵 = +∞ } +∞ = ( ( ♯ ‘ { 𝑘𝐴𝐵 = +∞ } ) ·e +∞ ) )
41 hashxrcl ( { 𝑘𝐴𝐵 = +∞ } ∈ V → ( ♯ ‘ { 𝑘𝐴𝐵 = +∞ } ) ∈ ℝ* )
42 37 41 syl ( 𝜑 → ( ♯ ‘ { 𝑘𝐴𝐵 = +∞ } ) ∈ ℝ* )
43 rabn0 ( { 𝑘𝐴𝐵 = +∞ } ≠ ∅ ↔ ∃ 𝑘𝐴 𝐵 = +∞ )
44 4 43 sylibr ( 𝜑 → { 𝑘𝐴𝐵 = +∞ } ≠ ∅ )
45 hashgt0 ( ( { 𝑘𝐴𝐵 = +∞ } ∈ V ∧ { 𝑘𝐴𝐵 = +∞ } ≠ ∅ ) → 0 < ( ♯ ‘ { 𝑘𝐴𝐵 = +∞ } ) )
46 37 44 45 syl2anc ( 𝜑 → 0 < ( ♯ ‘ { 𝑘𝐴𝐵 = +∞ } ) )
47 xmulpnf1 ( ( ( ♯ ‘ { 𝑘𝐴𝐵 = +∞ } ) ∈ ℝ* ∧ 0 < ( ♯ ‘ { 𝑘𝐴𝐵 = +∞ } ) ) → ( ( ♯ ‘ { 𝑘𝐴𝐵 = +∞ } ) ·e +∞ ) = +∞ )
48 42 46 47 syl2anc ( 𝜑 → ( ( ♯ ‘ { 𝑘𝐴𝐵 = +∞ } ) ·e +∞ ) = +∞ )
49 36 40 48 3eqtrd ( 𝜑 → Σ* 𝑘 ∈ { 𝑘𝐴𝐵 = +∞ } if ( 𝐵 = +∞ , +∞ , 0 ) = +∞ )
50 31 49 eqtr3d ( 𝜑 → Σ* 𝑘𝐴 if ( 𝐵 = +∞ , +∞ , 0 ) = +∞ )
51 breq1 ( +∞ = if ( 𝐵 = +∞ , +∞ , 0 ) → ( +∞ ≤ 𝐵 ↔ if ( 𝐵 = +∞ , +∞ , 0 ) ≤ 𝐵 ) )
52 breq1 ( 0 = if ( 𝐵 = +∞ , +∞ , 0 ) → ( 0 ≤ 𝐵 ↔ if ( 𝐵 = +∞ , +∞ , 0 ) ≤ 𝐵 ) )
53 pnfge ( +∞ ∈ ℝ* → +∞ ≤ +∞ )
54 16 53 ax-mp +∞ ≤ +∞
55 breq2 ( 𝐵 = +∞ → ( +∞ ≤ 𝐵 ↔ +∞ ≤ +∞ ) )
56 54 55 mpbiri ( 𝐵 = +∞ → +∞ ≤ 𝐵 )
57 56 adantl ( ( ( 𝜑𝑘𝐴 ) ∧ 𝐵 = +∞ ) → +∞ ≤ 𝐵 )
58 3 adantr ( ( ( 𝜑𝑘𝐴 ) ∧ ¬ 𝐵 = +∞ ) → 𝐵 ∈ ( 0 [,] +∞ ) )
59 iccgelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐵 )
60 15 16 59 mp3an12 ( 𝐵 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝐵 )
61 58 60 syl ( ( ( 𝜑𝑘𝐴 ) ∧ ¬ 𝐵 = +∞ ) → 0 ≤ 𝐵 )
62 51 52 57 61 ifbothda ( ( 𝜑𝑘𝐴 ) → if ( 𝐵 = +∞ , +∞ , 0 ) ≤ 𝐵 )
63 1 8 2 23 3 62 esumlef ( 𝜑 → Σ* 𝑘𝐴 if ( 𝐵 = +∞ , +∞ , 0 ) ≤ Σ* 𝑘𝐴 𝐵 )
64 50 63 eqbrtrrd ( 𝜑 → +∞ ≤ Σ* 𝑘𝐴 𝐵 )
65 xgepnf ( Σ* 𝑘𝐴 𝐵 ∈ ℝ* → ( +∞ ≤ Σ* 𝑘𝐴 𝐵 ↔ Σ* 𝑘𝐴 𝐵 = +∞ ) )
66 65 biimpd ( Σ* 𝑘𝐴 𝐵 ∈ ℝ* → ( +∞ ≤ Σ* 𝑘𝐴 𝐵 → Σ* 𝑘𝐴 𝐵 = +∞ ) )
67 11 64 66 sylc ( 𝜑 → Σ* 𝑘𝐴 𝐵 = +∞ )