Step |
Hyp |
Ref |
Expression |
1 |
|
esumpinfval.0 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
esumpinfval.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
esumpinfval.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
4 |
|
esumpinfval.3 |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) |
5 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
6 |
3
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐵 ∈ ( 0 [,] +∞ ) ) ) |
7 |
1 6
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
9 |
8
|
esumcl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
10 |
2 7 9
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
11 |
5 10
|
sselid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ℝ* ) |
12 |
|
nfrab1 |
⊢ Ⅎ 𝑘 { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } |
13 |
|
ssrab2 |
⊢ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ⊆ 𝐴 |
14 |
13
|
a1i |
⊢ ( 𝜑 → { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ⊆ 𝐴 ) |
15 |
|
0xr |
⊢ 0 ∈ ℝ* |
16 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
17 |
|
0lepnf |
⊢ 0 ≤ +∞ |
18 |
|
ubicc2 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → +∞ ∈ ( 0 [,] +∞ ) ) |
19 |
15 16 17 18
|
mp3an |
⊢ +∞ ∈ ( 0 [,] +∞ ) |
20 |
19
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝐵 = +∞ ) → +∞ ∈ ( 0 [,] +∞ ) ) |
21 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
22 |
21
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ¬ 𝐵 = +∞ ) → 0 ∈ ( 0 [,] +∞ ) ) |
23 |
20 22
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝐵 = +∞ , +∞ , 0 ) ∈ ( 0 [,] +∞ ) ) |
24 |
|
eldif |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ↔ ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ) |
25 |
|
rabid |
⊢ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ↔ ( 𝑘 ∈ 𝐴 ∧ 𝐵 = +∞ ) ) |
26 |
25
|
simplbi2 |
⊢ ( 𝑘 ∈ 𝐴 → ( 𝐵 = +∞ → 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ) |
27 |
26
|
con3dimp |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) → ¬ 𝐵 = +∞ ) |
28 |
24 27
|
sylbi |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) → ¬ 𝐵 = +∞ ) |
29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ) → ¬ 𝐵 = +∞ ) |
30 |
29
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ) → if ( 𝐵 = +∞ , +∞ , 0 ) = 0 ) |
31 |
1 12 8 14 2 23 30
|
esumss |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } if ( 𝐵 = +∞ , +∞ , 0 ) = Σ* 𝑘 ∈ 𝐴 if ( 𝐵 = +∞ , +∞ , 0 ) ) |
32 |
|
eqidd |
⊢ ( 𝜑 → { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } = { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) |
33 |
25
|
simprbi |
⊢ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } → 𝐵 = +∞ ) |
34 |
33
|
iftrued |
⊢ ( 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } → if ( 𝐵 = +∞ , +∞ , 0 ) = +∞ ) |
35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) → if ( 𝐵 = +∞ , +∞ , 0 ) = +∞ ) |
36 |
1 32 35
|
esumeq12dvaf |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } if ( 𝐵 = +∞ , +∞ , 0 ) = Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } +∞ ) |
37 |
2 14
|
ssexd |
⊢ ( 𝜑 → { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ∈ V ) |
38 |
|
nfcv |
⊢ Ⅎ 𝑘 +∞ |
39 |
12 38
|
esumcst |
⊢ ( ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ∈ V ∧ +∞ ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } +∞ = ( ( ♯ ‘ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ·e +∞ ) ) |
40 |
37 19 39
|
sylancl |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } +∞ = ( ( ♯ ‘ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ·e +∞ ) ) |
41 |
|
hashxrcl |
⊢ ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ∈ V → ( ♯ ‘ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ∈ ℝ* ) |
42 |
37 41
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ∈ ℝ* ) |
43 |
|
rabn0 |
⊢ ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ≠ ∅ ↔ ∃ 𝑘 ∈ 𝐴 𝐵 = +∞ ) |
44 |
4 43
|
sylibr |
⊢ ( 𝜑 → { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ≠ ∅ ) |
45 |
|
hashgt0 |
⊢ ( ( { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ∈ V ∧ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ≠ ∅ ) → 0 < ( ♯ ‘ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ) |
46 |
37 44 45
|
syl2anc |
⊢ ( 𝜑 → 0 < ( ♯ ‘ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ) |
47 |
|
xmulpnf1 |
⊢ ( ( ( ♯ ‘ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ∈ ℝ* ∧ 0 < ( ♯ ‘ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ) → ( ( ♯ ‘ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ·e +∞ ) = +∞ ) |
48 |
42 46 47
|
syl2anc |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } ) ·e +∞ ) = +∞ ) |
49 |
36 40 48
|
3eqtrd |
⊢ ( 𝜑 → Σ* 𝑘 ∈ { 𝑘 ∈ 𝐴 ∣ 𝐵 = +∞ } if ( 𝐵 = +∞ , +∞ , 0 ) = +∞ ) |
50 |
31 49
|
eqtr3d |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 if ( 𝐵 = +∞ , +∞ , 0 ) = +∞ ) |
51 |
|
breq1 |
⊢ ( +∞ = if ( 𝐵 = +∞ , +∞ , 0 ) → ( +∞ ≤ 𝐵 ↔ if ( 𝐵 = +∞ , +∞ , 0 ) ≤ 𝐵 ) ) |
52 |
|
breq1 |
⊢ ( 0 = if ( 𝐵 = +∞ , +∞ , 0 ) → ( 0 ≤ 𝐵 ↔ if ( 𝐵 = +∞ , +∞ , 0 ) ≤ 𝐵 ) ) |
53 |
|
pnfge |
⊢ ( +∞ ∈ ℝ* → +∞ ≤ +∞ ) |
54 |
16 53
|
ax-mp |
⊢ +∞ ≤ +∞ |
55 |
|
breq2 |
⊢ ( 𝐵 = +∞ → ( +∞ ≤ 𝐵 ↔ +∞ ≤ +∞ ) ) |
56 |
54 55
|
mpbiri |
⊢ ( 𝐵 = +∞ → +∞ ≤ 𝐵 ) |
57 |
56
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝐵 = +∞ ) → +∞ ≤ 𝐵 ) |
58 |
3
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ¬ 𝐵 = +∞ ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
59 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐵 ) |
60 |
15 16 59
|
mp3an12 |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) → 0 ≤ 𝐵 ) |
61 |
58 60
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ¬ 𝐵 = +∞ ) → 0 ≤ 𝐵 ) |
62 |
51 52 57 61
|
ifbothda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝐵 = +∞ , +∞ , 0 ) ≤ 𝐵 ) |
63 |
1 8 2 23 3 62
|
esumlef |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 if ( 𝐵 = +∞ , +∞ , 0 ) ≤ Σ* 𝑘 ∈ 𝐴 𝐵 ) |
64 |
50 63
|
eqbrtrrd |
⊢ ( 𝜑 → +∞ ≤ Σ* 𝑘 ∈ 𝐴 𝐵 ) |
65 |
|
xgepnf |
⊢ ( Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ℝ* → ( +∞ ≤ Σ* 𝑘 ∈ 𝐴 𝐵 ↔ Σ* 𝑘 ∈ 𝐴 𝐵 = +∞ ) ) |
66 |
65
|
biimpd |
⊢ ( Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ℝ* → ( +∞ ≤ Σ* 𝑘 ∈ 𝐴 𝐵 → Σ* 𝑘 ∈ 𝐴 𝐵 = +∞ ) ) |
67 |
11 64 66
|
sylc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 = +∞ ) |