| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumcst.1 |
⊢ Ⅎ 𝑘 𝐴 |
| 2 |
|
esumcst.2 |
⊢ Ⅎ 𝑘 𝐵 |
| 3 |
1
|
nfel1 |
⊢ Ⅎ 𝑘 𝐴 ∈ 𝑉 |
| 4 |
2
|
nfel1 |
⊢ Ⅎ 𝑘 𝐵 ∈ ( 0 [,] +∞ ) |
| 5 |
3 4
|
nfan |
⊢ Ⅎ 𝑘 ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 6 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → 𝐴 ∈ 𝑉 ) |
| 7 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 8 |
|
xrge0tmd |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopMnd |
| 9 |
|
tmdmnd |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ TopMnd → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
| 10 |
8 9
|
ax-mp |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd |
| 11 |
10
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ) |
| 12 |
|
inss2 |
⊢ ( 𝒫 𝐴 ∩ Fin ) ⊆ Fin |
| 13 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 14 |
12 13
|
sselid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ∈ Fin ) |
| 15 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 16 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 17 |
|
eqid |
⊢ ( .g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) = ( .g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 18 |
2 16 17
|
gsumconstf |
⊢ ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ Mnd ∧ 𝑥 ∈ Fin ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝑥 ↦ 𝐵 ) ) = ( ( ♯ ‘ 𝑥 ) ( .g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) 𝐵 ) ) |
| 19 |
11 14 15 18
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝑥 ↦ 𝐵 ) ) = ( ( ♯ ‘ 𝑥 ) ( .g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) 𝐵 ) ) |
| 20 |
|
hashcl |
⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
| 21 |
14 20
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
| 22 |
|
xrge0mulgnn0 |
⊢ ( ( ( ♯ ‘ 𝑥 ) ∈ ℕ0 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ( ( ♯ ‘ 𝑥 ) ( .g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 23 |
21 15 22
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ♯ ‘ 𝑥 ) ( .g ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 24 |
19 23
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ 𝑥 ↦ 𝐵 ) ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 25 |
5 1 6 7 24
|
esumval |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ 𝐴 𝐵 = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) , ℝ* , < ) ) |
| 26 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
| 27 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 28 |
26 27
|
sstri |
⊢ ℕ0 ⊆ ℝ* |
| 29 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 30 |
|
snssi |
⊢ ( +∞ ∈ ℝ* → { +∞ } ⊆ ℝ* ) |
| 31 |
29 30
|
ax-mp |
⊢ { +∞ } ⊆ ℝ* |
| 32 |
28 31
|
unssi |
⊢ ( ℕ0 ∪ { +∞ } ) ⊆ ℝ* |
| 33 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
| 34 |
|
vex |
⊢ 𝑥 ∈ V |
| 35 |
|
ffvelcdm |
⊢ ( ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) ∧ 𝑥 ∈ V ) → ( ♯ ‘ 𝑥 ) ∈ ( ℕ0 ∪ { +∞ } ) ) |
| 36 |
33 34 35
|
mp2an |
⊢ ( ♯ ‘ 𝑥 ) ∈ ( ℕ0 ∪ { +∞ } ) |
| 37 |
32 36
|
sselii |
⊢ ( ♯ ‘ 𝑥 ) ∈ ℝ* |
| 38 |
37
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ♯ ‘ 𝑥 ) ∈ ℝ* ) |
| 39 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 40 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 41 |
39 40
|
sselid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → 𝐵 ∈ ℝ* ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐵 ∈ ℝ* ) |
| 43 |
38 42
|
xmulcld |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∈ ℝ* ) |
| 44 |
43
|
fmpttd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) : ( 𝒫 𝐴 ∩ Fin ) ⟶ ℝ* ) |
| 45 |
44
|
frnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ⊆ ℝ* ) |
| 46 |
|
hashxrcl |
⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) |
| 48 |
47 41
|
xmulcld |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ℝ* ) |
| 49 |
|
vex |
⊢ 𝑦 ∈ V |
| 50 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 51 |
50
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ) |
| 52 |
49 51
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 53 |
52
|
biimpi |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 54 |
47
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) |
| 55 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 56 |
55
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 0 ∈ ℝ* ) |
| 57 |
29
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → +∞ ∈ ℝ* ) |
| 58 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐵 ) |
| 59 |
56 57 15 58
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 0 ≤ 𝐵 ) |
| 60 |
42 59
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) |
| 61 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐴 ∈ 𝑉 ) |
| 62 |
|
inss1 |
⊢ ( 𝒫 𝐴 ∩ Fin ) ⊆ 𝒫 𝐴 |
| 63 |
62
|
sseli |
⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 64 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴 ) |
| 65 |
13 63 64
|
3syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ⊆ 𝐴 ) |
| 66 |
|
ssdomg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ⊆ 𝐴 → 𝑥 ≼ 𝐴 ) ) |
| 67 |
61 65 66
|
sylc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ≼ 𝐴 ) |
| 68 |
|
hashdomi |
⊢ ( 𝑥 ≼ 𝐴 → ( ♯ ‘ 𝑥 ) ≤ ( ♯ ‘ 𝐴 ) ) |
| 69 |
67 68
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ♯ ‘ 𝑥 ) ≤ ( ♯ ‘ 𝐴 ) ) |
| 70 |
|
xlemul1a |
⊢ ( ( ( ( ♯ ‘ 𝑥 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐴 ) ∈ ℝ* ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) ∧ ( ♯ ‘ 𝑥 ) ≤ ( ♯ ‘ 𝐴 ) ) → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) |
| 71 |
38 54 60 69 70
|
syl31anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) |
| 72 |
71
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) |
| 73 |
|
r19.29r |
⊢ ( ( ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∧ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ) |
| 74 |
53 72 73
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∧ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ) |
| 75 |
|
simpl |
⊢ ( ( 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∧ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 76 |
|
simpr |
⊢ ( ( 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∧ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) |
| 77 |
75 76
|
eqbrtrd |
⊢ ( ( 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∧ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → 𝑦 ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) |
| 78 |
77
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∧ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → 𝑦 ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) |
| 79 |
74 78
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ) → 𝑦 ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) |
| 80 |
79
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ∀ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) |
| 81 |
|
pwidg |
⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴 ) |
| 82 |
81
|
ancri |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∈ 𝒫 𝐴 ∧ 𝐴 ∈ Fin ) ) |
| 83 |
|
elin |
⊢ ( 𝐴 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝐴 ∈ 𝒫 𝐴 ∧ 𝐴 ∈ Fin ) ) |
| 84 |
82 83
|
sylibr |
⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 85 |
|
eqid |
⊢ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) |
| 86 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐴 ) ) |
| 87 |
86
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) |
| 88 |
87
|
rspceeqv |
⊢ ( ( 𝐴 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 89 |
85 88
|
mpan2 |
⊢ ( 𝐴 ∈ ( 𝒫 𝐴 ∩ Fin ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 90 |
|
ovex |
⊢ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ V |
| 91 |
50
|
elrnmpt |
⊢ ( ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ V → ( ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ) |
| 92 |
90 91
|
ax-mp |
⊢ ( ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 93 |
89 92
|
sylibr |
⊢ ( 𝐴 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ) |
| 94 |
84 93
|
syl |
⊢ ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ) |
| 95 |
94
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ) |
| 96 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ 𝐴 ∈ Fin ) → 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) |
| 97 |
|
breq2 |
⊢ ( 𝑧 = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) → ( 𝑦 < 𝑧 ↔ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ) |
| 98 |
97
|
rspcev |
⊢ ( ( ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) |
| 99 |
95 96 98
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ 𝐴 ∈ Fin ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) |
| 100 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐴 |
| 101 |
|
0fi |
⊢ ∅ ∈ Fin |
| 102 |
|
elin |
⊢ ( ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin ) ) |
| 103 |
100 101 102
|
mpbir2an |
⊢ ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) |
| 104 |
103
|
a1i |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 105 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → 𝐵 = 0 ) |
| 106 |
105
|
oveq2d |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ( ( ♯ ‘ ∅ ) ·e 𝐵 ) = ( ( ♯ ‘ ∅ ) ·e 0 ) ) |
| 107 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 108 |
107 55
|
eqeltri |
⊢ ( ♯ ‘ ∅ ) ∈ ℝ* |
| 109 |
|
xmul01 |
⊢ ( ( ♯ ‘ ∅ ) ∈ ℝ* → ( ( ♯ ‘ ∅ ) ·e 0 ) = 0 ) |
| 110 |
108 109
|
ax-mp |
⊢ ( ( ♯ ‘ ∅ ) ·e 0 ) = 0 |
| 111 |
106 110
|
eqtr2di |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → 0 = ( ( ♯ ‘ ∅ ) ·e 𝐵 ) ) |
| 112 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) |
| 113 |
112
|
oveq1d |
⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) = ( ( ♯ ‘ ∅ ) ·e 𝐵 ) ) |
| 114 |
113
|
rspceeqv |
⊢ ( ( ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 0 = ( ( ♯ ‘ ∅ ) ·e 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 0 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 115 |
104 111 114
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 0 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 116 |
|
ovex |
⊢ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∈ V |
| 117 |
50 116
|
elrnmpti |
⊢ ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 0 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 118 |
115 117
|
sylibr |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → 0 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ) |
| 119 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) |
| 120 |
105
|
oveq2d |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝐴 ) ·e 0 ) ) |
| 121 |
47
|
ad4antr |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) |
| 122 |
|
xmul01 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℝ* → ( ( ♯ ‘ 𝐴 ) ·e 0 ) = 0 ) |
| 123 |
121 122
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ( ( ♯ ‘ 𝐴 ) ·e 0 ) = 0 ) |
| 124 |
120 123
|
eqtrd |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = 0 ) |
| 125 |
119 124
|
breqtrd |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → 𝑦 < 0 ) |
| 126 |
|
breq2 |
⊢ ( 𝑧 = 0 → ( 𝑦 < 𝑧 ↔ 𝑦 < 0 ) ) |
| 127 |
126
|
rspcev |
⊢ ( ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ∧ 𝑦 < 0 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) |
| 128 |
118 125 127
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) |
| 129 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑎 ∈ 𝒫 𝐴 ) |
| 130 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( ♯ ‘ 𝑎 ) = 𝑛 ) |
| 131 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑛 ∈ ℕ ) |
| 132 |
130 131
|
eqeltrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( ♯ ‘ 𝑎 ) ∈ ℕ ) |
| 133 |
|
nnnn0 |
⊢ ( ( ♯ ‘ 𝑎 ) ∈ ℕ → ( ♯ ‘ 𝑎 ) ∈ ℕ0 ) |
| 134 |
|
vex |
⊢ 𝑎 ∈ V |
| 135 |
|
hashclb |
⊢ ( 𝑎 ∈ V → ( 𝑎 ∈ Fin ↔ ( ♯ ‘ 𝑎 ) ∈ ℕ0 ) ) |
| 136 |
134 135
|
ax-mp |
⊢ ( 𝑎 ∈ Fin ↔ ( ♯ ‘ 𝑎 ) ∈ ℕ0 ) |
| 137 |
133 136
|
sylibr |
⊢ ( ( ♯ ‘ 𝑎 ) ∈ ℕ → 𝑎 ∈ Fin ) |
| 138 |
132 137
|
syl |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑎 ∈ Fin ) |
| 139 |
129 138
|
elind |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 140 |
|
eqidd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ) |
| 141 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑎 ) ) |
| 142 |
141
|
oveq1d |
⊢ ( 𝑥 = 𝑎 → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ) |
| 143 |
142
|
rspceeqv |
⊢ ( ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 144 |
139 140 143
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 145 |
50 116
|
elrnmpti |
⊢ ( ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 146 |
144 145
|
sylibr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ) |
| 147 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( 𝑦 / 𝐵 ) < 𝑛 ) |
| 148 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑦 ∈ ℝ ) |
| 149 |
131
|
nnred |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑛 ∈ ℝ ) |
| 150 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝐵 ∈ ℝ+ ) |
| 151 |
148 149 150
|
ltdivmul2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( ( 𝑦 / 𝐵 ) < 𝑛 ↔ 𝑦 < ( 𝑛 · 𝐵 ) ) ) |
| 152 |
147 151
|
mpbid |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑦 < ( 𝑛 · 𝐵 ) ) |
| 153 |
130
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) = ( 𝑛 ·e 𝐵 ) ) |
| 154 |
150
|
rpred |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝐵 ∈ ℝ ) |
| 155 |
|
rexmul |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑛 ·e 𝐵 ) = ( 𝑛 · 𝐵 ) ) |
| 156 |
149 154 155
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( 𝑛 ·e 𝐵 ) = ( 𝑛 · 𝐵 ) ) |
| 157 |
153 156
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) = ( 𝑛 · 𝐵 ) ) |
| 158 |
152 157
|
breqtrrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑦 < ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ) |
| 159 |
|
breq2 |
⊢ ( 𝑧 = ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) → ( 𝑦 < 𝑧 ↔ 𝑦 < ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ) ) |
| 160 |
159
|
rspcev |
⊢ ( ( ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ∧ 𝑦 < ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) |
| 161 |
146 158 160
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) |
| 162 |
161
|
rexlimdva2 |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) → ( ∃ 𝑎 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑎 ) = 𝑛 → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) ) |
| 163 |
162
|
impr |
⊢ ( ( ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑦 / 𝐵 ) < 𝑛 ∧ ∃ 𝑎 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑎 ) = 𝑛 ) ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) |
| 164 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) → 𝑦 ∈ ℝ ) |
| 165 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ ) |
| 166 |
164 165
|
rerpdivcld |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) → ( 𝑦 / 𝐵 ) ∈ ℝ ) |
| 167 |
|
arch |
⊢ ( ( 𝑦 / 𝐵 ) ∈ ℝ → ∃ 𝑛 ∈ ℕ ( 𝑦 / 𝐵 ) < 𝑛 ) |
| 168 |
166 167
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑛 ∈ ℕ ( 𝑦 / 𝐵 ) < 𝑛 ) |
| 169 |
|
ishashinf |
⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑛 ∈ ℕ ∃ 𝑎 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑎 ) = 𝑛 ) |
| 170 |
169
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) → ∀ 𝑛 ∈ ℕ ∃ 𝑎 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑎 ) = 𝑛 ) |
| 171 |
|
r19.29r |
⊢ ( ( ∃ 𝑛 ∈ ℕ ( 𝑦 / 𝐵 ) < 𝑛 ∧ ∀ 𝑛 ∈ ℕ ∃ 𝑎 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑎 ) = 𝑛 ) → ∃ 𝑛 ∈ ℕ ( ( 𝑦 / 𝐵 ) < 𝑛 ∧ ∃ 𝑎 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑎 ) = 𝑛 ) ) |
| 172 |
168 170 171
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑛 ∈ ℕ ( ( 𝑦 / 𝐵 ) < 𝑛 ∧ ∃ 𝑎 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑎 ) = 𝑛 ) ) |
| 173 |
163 172
|
r19.29a |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) |
| 174 |
|
nfielex |
⊢ ( ¬ 𝐴 ∈ Fin → ∃ 𝑙 𝑙 ∈ 𝐴 ) |
| 175 |
174
|
adantr |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) → ∃ 𝑙 𝑙 ∈ 𝐴 ) |
| 176 |
|
snelpwi |
⊢ ( 𝑙 ∈ 𝐴 → { 𝑙 } ∈ 𝒫 𝐴 ) |
| 177 |
|
snfi |
⊢ { 𝑙 } ∈ Fin |
| 178 |
176 177
|
jctir |
⊢ ( 𝑙 ∈ 𝐴 → ( { 𝑙 } ∈ 𝒫 𝐴 ∧ { 𝑙 } ∈ Fin ) ) |
| 179 |
|
elin |
⊢ ( { 𝑙 } ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( { 𝑙 } ∈ 𝒫 𝐴 ∧ { 𝑙 } ∈ Fin ) ) |
| 180 |
178 179
|
sylibr |
⊢ ( 𝑙 ∈ 𝐴 → { 𝑙 } ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 181 |
180
|
adantl |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) ∧ 𝑙 ∈ 𝐴 ) → { 𝑙 } ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 182 |
|
simplr |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) ∧ 𝑙 ∈ 𝐴 ) → 𝐵 = +∞ ) |
| 183 |
182
|
oveq2d |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) ∧ 𝑙 ∈ 𝐴 ) → ( ( ♯ ‘ { 𝑙 } ) ·e 𝐵 ) = ( ( ♯ ‘ { 𝑙 } ) ·e +∞ ) ) |
| 184 |
|
hashsng |
⊢ ( 𝑙 ∈ 𝐴 → ( ♯ ‘ { 𝑙 } ) = 1 ) |
| 185 |
|
1re |
⊢ 1 ∈ ℝ |
| 186 |
27 185
|
sselii |
⊢ 1 ∈ ℝ* |
| 187 |
184 186
|
eqeltrdi |
⊢ ( 𝑙 ∈ 𝐴 → ( ♯ ‘ { 𝑙 } ) ∈ ℝ* ) |
| 188 |
|
0lt1 |
⊢ 0 < 1 |
| 189 |
188 184
|
breqtrrid |
⊢ ( 𝑙 ∈ 𝐴 → 0 < ( ♯ ‘ { 𝑙 } ) ) |
| 190 |
|
xmulpnf1 |
⊢ ( ( ( ♯ ‘ { 𝑙 } ) ∈ ℝ* ∧ 0 < ( ♯ ‘ { 𝑙 } ) ) → ( ( ♯ ‘ { 𝑙 } ) ·e +∞ ) = +∞ ) |
| 191 |
187 189 190
|
syl2anc |
⊢ ( 𝑙 ∈ 𝐴 → ( ( ♯ ‘ { 𝑙 } ) ·e +∞ ) = +∞ ) |
| 192 |
191
|
adantl |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) ∧ 𝑙 ∈ 𝐴 ) → ( ( ♯ ‘ { 𝑙 } ) ·e +∞ ) = +∞ ) |
| 193 |
183 192
|
eqtr2d |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) ∧ 𝑙 ∈ 𝐴 ) → +∞ = ( ( ♯ ‘ { 𝑙 } ) ·e 𝐵 ) ) |
| 194 |
|
fveq2 |
⊢ ( 𝑥 = { 𝑙 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑙 } ) ) |
| 195 |
194
|
oveq1d |
⊢ ( 𝑥 = { 𝑙 } → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) = ( ( ♯ ‘ { 𝑙 } ) ·e 𝐵 ) ) |
| 196 |
195
|
rspceeqv |
⊢ ( ( { 𝑙 } ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ +∞ = ( ( ♯ ‘ { 𝑙 } ) ·e 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) +∞ = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 197 |
181 193 196
|
syl2anc |
⊢ ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) ∧ 𝑙 ∈ 𝐴 ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) +∞ = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 198 |
175 197
|
exlimddv |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) +∞ = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 199 |
198
|
adantll |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = +∞ ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) +∞ = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 200 |
50 116
|
elrnmpti |
⊢ ( +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) +∞ = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) |
| 201 |
199 200
|
sylibr |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = +∞ ) → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ) |
| 202 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = +∞ ) → 𝑦 ∈ ℝ ) |
| 203 |
|
ltpnf |
⊢ ( 𝑦 ∈ ℝ → 𝑦 < +∞ ) |
| 204 |
202 203
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = +∞ ) → 𝑦 < +∞ ) |
| 205 |
|
breq2 |
⊢ ( 𝑧 = +∞ → ( 𝑦 < 𝑧 ↔ 𝑦 < +∞ ) ) |
| 206 |
205
|
rspcev |
⊢ ( ( +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ∧ 𝑦 < +∞ ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) |
| 207 |
201 204 206
|
syl2anc |
⊢ ( ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = +∞ ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) |
| 208 |
|
simp-4r |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 209 |
|
elxrge02 |
⊢ ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 𝐵 = 0 ∨ 𝐵 ∈ ℝ+ ∨ 𝐵 = +∞ ) ) |
| 210 |
208 209
|
sylib |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐵 = 0 ∨ 𝐵 ∈ ℝ+ ∨ 𝐵 = +∞ ) ) |
| 211 |
128 173 207 210
|
mpjao3dan |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) |
| 212 |
99 211
|
pm2.61dan |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) |
| 213 |
212
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) ) |
| 214 |
213
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ∀ 𝑦 ∈ ℝ ( 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) ) |
| 215 |
|
supxr2 |
⊢ ( ( ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ⊆ ℝ* ∧ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ℝ* ) ∧ ( ∀ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) ) ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) , ℝ* , < ) = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) |
| 216 |
45 48 80 214 215
|
syl22anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) , ℝ* , < ) = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) |
| 217 |
25 216
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ 𝐴 𝐵 = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) |