Metamath Proof Explorer


Theorem esumcst

Description: The extended sum of a constant. (Contributed by Thierry Arnoux, 3-Mar-2017) (Revised by Thierry Arnoux, 5-Jul-2017)

Ref Expression
Hypotheses esumcst.1 𝑘 𝐴
esumcst.2 𝑘 𝐵
Assertion esumcst ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘𝐴 𝐵 = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )

Proof

Step Hyp Ref Expression
1 esumcst.1 𝑘 𝐴
2 esumcst.2 𝑘 𝐵
3 1 nfel1 𝑘 𝐴𝑉
4 2 nfel1 𝑘 𝐵 ∈ ( 0 [,] +∞ )
5 3 4 nfan 𝑘 ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) )
6 simpl ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) → 𝐴𝑉 )
7 simplr ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
8 xrge0tmd ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopMnd
9 tmdmnd ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ TopMnd → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ Mnd )
10 8 9 ax-mp ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ Mnd
11 10 a1i ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ Mnd )
12 inss2 ( 𝒫 𝐴 ∩ Fin ) ⊆ Fin
13 simpr ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) )
14 12 13 sseldi ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥 ∈ Fin )
15 simplr ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐵 ∈ ( 0 [,] +∞ ) )
16 xrge0base ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
17 eqid ( .g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) = ( .g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) )
18 2 16 17 gsumconstf ( ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) ∈ Mnd ∧ 𝑥 ∈ Fin ∧ 𝐵 ∈ ( 0 [,] +∞ ) ) → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝑥𝐵 ) ) = ( ( ♯ ‘ 𝑥 ) ( .g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) 𝐵 ) )
19 11 14 15 18 syl3anc ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝑥𝐵 ) ) = ( ( ♯ ‘ 𝑥 ) ( .g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) 𝐵 ) )
20 hashcl ( 𝑥 ∈ Fin → ( ♯ ‘ 𝑥 ) ∈ ℕ0 )
21 14 20 syl ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 )
22 xrge0mulgnn0 ( ( ( ♯ ‘ 𝑥 ) ∈ ℕ0𝐵 ∈ ( 0 [,] +∞ ) ) → ( ( ♯ ‘ 𝑥 ) ( .g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
23 21 15 22 syl2anc ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ♯ ‘ 𝑥 ) ( .g ‘ ( ℝ*𝑠s ( 0 [,] +∞ ) ) ) 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
24 19 23 eqtrd ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) Σg ( 𝑘𝑥𝐵 ) ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
25 5 1 6 7 24 esumval ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘𝐴 𝐵 = sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) , ℝ* , < ) )
26 nn0ssre 0 ⊆ ℝ
27 ressxr ℝ ⊆ ℝ*
28 26 27 sstri 0 ⊆ ℝ*
29 pnfxr +∞ ∈ ℝ*
30 snssi ( +∞ ∈ ℝ* → { +∞ } ⊆ ℝ* )
31 29 30 ax-mp { +∞ } ⊆ ℝ*
32 28 31 unssi ( ℕ0 ∪ { +∞ } ) ⊆ ℝ*
33 hashf ♯ : V ⟶ ( ℕ0 ∪ { +∞ } )
34 vex 𝑥 ∈ V
35 ffvelrn ( ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) ∧ 𝑥 ∈ V ) → ( ♯ ‘ 𝑥 ) ∈ ( ℕ0 ∪ { +∞ } ) )
36 33 34 35 mp2an ( ♯ ‘ 𝑥 ) ∈ ( ℕ0 ∪ { +∞ } )
37 32 36 sselii ( ♯ ‘ 𝑥 ) ∈ ℝ*
38 37 a1i ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ♯ ‘ 𝑥 ) ∈ ℝ* )
39 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
40 simpr ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) → 𝐵 ∈ ( 0 [,] +∞ ) )
41 39 40 sseldi ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) → 𝐵 ∈ ℝ* )
42 41 adantr ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐵 ∈ ℝ* )
43 38 42 xmulcld ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∈ ℝ* )
44 43 fmpttd ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) → ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) : ( 𝒫 𝐴 ∩ Fin ) ⟶ ℝ* )
45 44 frnd ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) → ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ⊆ ℝ* )
46 hashxrcl ( 𝐴𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* )
47 46 adantr ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) → ( ♯ ‘ 𝐴 ) ∈ ℝ* )
48 47 41 xmulcld ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) → ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ℝ* )
49 vex 𝑦 ∈ V
50 eqid ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) = ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
51 50 elrnmpt ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) )
52 49 51 ax-mp ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
53 52 biimpi ( 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
54 47 adantr ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ♯ ‘ 𝐴 ) ∈ ℝ* )
55 0xr 0 ∈ ℝ*
56 55 a1i ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 0 ∈ ℝ* )
57 29 a1i ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → +∞ ∈ ℝ* )
58 iccgelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐵 )
59 56 57 15 58 syl3anc ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 0 ≤ 𝐵 )
60 42 59 jca ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) )
61 6 adantr ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝐴𝑉 )
62 inss1 ( 𝒫 𝐴 ∩ Fin ) ⊆ 𝒫 𝐴
63 62 sseli ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑥 ∈ 𝒫 𝐴 )
64 elpwi ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
65 13 63 64 3syl ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥𝐴 )
66 ssdomg ( 𝐴𝑉 → ( 𝑥𝐴𝑥𝐴 ) )
67 61 65 66 sylc ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑥𝐴 )
68 hashdomi ( 𝑥𝐴 → ( ♯ ‘ 𝑥 ) ≤ ( ♯ ‘ 𝐴 ) )
69 67 68 syl ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ♯ ‘ 𝑥 ) ≤ ( ♯ ‘ 𝐴 ) )
70 xlemul1a ( ( ( ( ♯ ‘ 𝑥 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐴 ) ∈ ℝ* ∧ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) ) ∧ ( ♯ ‘ 𝑥 ) ≤ ( ♯ ‘ 𝐴 ) ) → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )
71 38 54 60 69 70 syl31anc ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )
72 71 ralrimiva ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) → ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )
73 r19.29r ( ( ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∧ ∀ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∧ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) )
74 53 72 73 syl2anr ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∧ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) )
75 simpl ( ( 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∧ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
76 simpr ( ( 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∧ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )
77 75 76 eqbrtrd ( ( 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∧ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → 𝑦 ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )
78 77 rexlimivw ( ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( 𝑦 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∧ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → 𝑦 ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )
79 74 78 syl ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ) → 𝑦 ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )
80 79 ralrimiva ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) → ∀ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )
81 pwidg ( 𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴 )
82 81 ancri ( 𝐴 ∈ Fin → ( 𝐴 ∈ 𝒫 𝐴𝐴 ∈ Fin ) )
83 elin ( 𝐴 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝐴 ∈ 𝒫 𝐴𝐴 ∈ Fin ) )
84 82 83 sylibr ( 𝐴 ∈ Fin → 𝐴 ∈ ( 𝒫 𝐴 ∩ Fin ) )
85 eqid ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 )
86 fveq2 ( 𝑥 = 𝐴 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐴 ) )
87 86 oveq1d ( 𝑥 = 𝐴 → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )
88 87 rspceeqv ( ( 𝐴 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
89 85 88 mpan2 ( 𝐴 ∈ ( 𝒫 𝐴 ∩ Fin ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
90 ovex ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ V
91 50 elrnmpt ( ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ V → ( ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) )
92 90 91 ax-mp ( ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
93 89 92 sylibr ( 𝐴 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) )
94 84 93 syl ( 𝐴 ∈ Fin → ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) )
95 94 adantl ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ 𝐴 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) )
96 simplr ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ 𝐴 ∈ Fin ) → 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )
97 breq2 ( 𝑧 = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) → ( 𝑦 < 𝑧𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) )
98 97 rspcev ( ( ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 )
99 95 96 98 syl2anc ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ 𝐴 ∈ Fin ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 )
100 0elpw ∅ ∈ 𝒫 𝐴
101 0fin ∅ ∈ Fin
102 elin ( ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( ∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin ) )
103 100 101 102 mpbir2an ∅ ∈ ( 𝒫 𝐴 ∩ Fin )
104 103 a1i ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) )
105 simpr ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → 𝐵 = 0 )
106 105 oveq2d ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ( ( ♯ ‘ ∅ ) ·e 𝐵 ) = ( ( ♯ ‘ ∅ ) ·e 0 ) )
107 hash0 ( ♯ ‘ ∅ ) = 0
108 107 55 eqeltri ( ♯ ‘ ∅ ) ∈ ℝ*
109 xmul01 ( ( ♯ ‘ ∅ ) ∈ ℝ* → ( ( ♯ ‘ ∅ ) ·e 0 ) = 0 )
110 108 109 ax-mp ( ( ♯ ‘ ∅ ) ·e 0 ) = 0
111 106 110 eqtr2di ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → 0 = ( ( ♯ ‘ ∅ ) ·e 𝐵 ) )
112 fveq2 ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) )
113 112 oveq1d ( 𝑥 = ∅ → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) = ( ( ♯ ‘ ∅ ) ·e 𝐵 ) )
114 113 rspceeqv ( ( ∅ ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 0 = ( ( ♯ ‘ ∅ ) ·e 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 0 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
115 104 111 114 syl2anc ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 0 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
116 ovex ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ∈ V
117 50 116 elrnmpti ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) 0 = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
118 115 117 sylibr ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → 0 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) )
119 simpllr ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )
120 105 oveq2d ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝐴 ) ·e 0 ) )
121 47 ad4antr ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ( ♯ ‘ 𝐴 ) ∈ ℝ* )
122 xmul01 ( ( ♯ ‘ 𝐴 ) ∈ ℝ* → ( ( ♯ ‘ 𝐴 ) ·e 0 ) = 0 )
123 121 122 syl ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ( ( ♯ ‘ 𝐴 ) ·e 0 ) = 0 )
124 120 123 eqtrd ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) = 0 )
125 119 124 breqtrd ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → 𝑦 < 0 )
126 breq2 ( 𝑧 = 0 → ( 𝑦 < 𝑧𝑦 < 0 ) )
127 126 rspcev ( ( 0 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ∧ 𝑦 < 0 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 )
128 118 125 127 syl2anc ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = 0 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 )
129 simplr ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑎 ∈ 𝒫 𝐴 )
130 simpr ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( ♯ ‘ 𝑎 ) = 𝑛 )
131 simp-4r ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑛 ∈ ℕ )
132 130 131 eqeltrd ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( ♯ ‘ 𝑎 ) ∈ ℕ )
133 nnnn0 ( ( ♯ ‘ 𝑎 ) ∈ ℕ → ( ♯ ‘ 𝑎 ) ∈ ℕ0 )
134 vex 𝑎 ∈ V
135 hashclb ( 𝑎 ∈ V → ( 𝑎 ∈ Fin ↔ ( ♯ ‘ 𝑎 ) ∈ ℕ0 ) )
136 134 135 ax-mp ( 𝑎 ∈ Fin ↔ ( ♯ ‘ 𝑎 ) ∈ ℕ0 )
137 133 136 sylibr ( ( ♯ ‘ 𝑎 ) ∈ ℕ → 𝑎 ∈ Fin )
138 132 137 syl ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑎 ∈ Fin )
139 129 138 elind ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) )
140 eqidd ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) )
141 fveq2 ( 𝑥 = 𝑎 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑎 ) )
142 141 oveq1d ( 𝑥 = 𝑎 → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) )
143 142 rspceeqv ( ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
144 139 140 143 syl2anc ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
145 50 116 elrnmpti ( ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
146 144 145 sylibr ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) )
147 simpllr ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( 𝑦 / 𝐵 ) < 𝑛 )
148 simp-8r ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑦 ∈ ℝ )
149 131 nnred ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑛 ∈ ℝ )
150 simp-5r ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝐵 ∈ ℝ+ )
151 148 149 150 ltdivmul2d ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( ( 𝑦 / 𝐵 ) < 𝑛𝑦 < ( 𝑛 · 𝐵 ) ) )
152 147 151 mpbid ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑦 < ( 𝑛 · 𝐵 ) )
153 130 oveq1d ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) = ( 𝑛 ·e 𝐵 ) )
154 150 rpred ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝐵 ∈ ℝ )
155 rexmul ( ( 𝑛 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑛 ·e 𝐵 ) = ( 𝑛 · 𝐵 ) )
156 149 154 155 syl2anc ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( 𝑛 ·e 𝐵 ) = ( 𝑛 · 𝐵 ) )
157 153 156 eqtrd ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) = ( 𝑛 · 𝐵 ) )
158 152 157 breqtrrd ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → 𝑦 < ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) )
159 breq2 ( 𝑧 = ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) → ( 𝑦 < 𝑧𝑦 < ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ) )
160 159 rspcev ( ( ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ∧ 𝑦 < ( ( ♯ ‘ 𝑎 ) ·e 𝐵 ) ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 )
161 146 158 160 syl2anc ( ( ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) ∧ 𝑎 ∈ 𝒫 𝐴 ) ∧ ( ♯ ‘ 𝑎 ) = 𝑛 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 )
162 161 rexlimdva2 ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑦 / 𝐵 ) < 𝑛 ) → ( ∃ 𝑎 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑎 ) = 𝑛 → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) )
163 162 impr ( ( ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑦 / 𝐵 ) < 𝑛 ∧ ∃ 𝑎 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑎 ) = 𝑛 ) ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 )
164 simp-4r ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) → 𝑦 ∈ ℝ )
165 simpr ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ )
166 164 165 rerpdivcld ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) → ( 𝑦 / 𝐵 ) ∈ ℝ )
167 arch ( ( 𝑦 / 𝐵 ) ∈ ℝ → ∃ 𝑛 ∈ ℕ ( 𝑦 / 𝐵 ) < 𝑛 )
168 166 167 syl ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑛 ∈ ℕ ( 𝑦 / 𝐵 ) < 𝑛 )
169 ishashinf ( ¬ 𝐴 ∈ Fin → ∀ 𝑛 ∈ ℕ ∃ 𝑎 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑎 ) = 𝑛 )
170 169 ad2antlr ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) → ∀ 𝑛 ∈ ℕ ∃ 𝑎 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑎 ) = 𝑛 )
171 r19.29r ( ( ∃ 𝑛 ∈ ℕ ( 𝑦 / 𝐵 ) < 𝑛 ∧ ∀ 𝑛 ∈ ℕ ∃ 𝑎 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑎 ) = 𝑛 ) → ∃ 𝑛 ∈ ℕ ( ( 𝑦 / 𝐵 ) < 𝑛 ∧ ∃ 𝑎 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑎 ) = 𝑛 ) )
172 168 170 171 syl2anc ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑛 ∈ ℕ ( ( 𝑦 / 𝐵 ) < 𝑛 ∧ ∃ 𝑎 ∈ 𝒫 𝐴 ( ♯ ‘ 𝑎 ) = 𝑛 ) )
173 163 172 r19.29a ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 )
174 nfielex ( ¬ 𝐴 ∈ Fin → ∃ 𝑙 𝑙𝐴 )
175 174 adantr ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) → ∃ 𝑙 𝑙𝐴 )
176 snelpwi ( 𝑙𝐴 → { 𝑙 } ∈ 𝒫 𝐴 )
177 snfi { 𝑙 } ∈ Fin
178 176 177 jctir ( 𝑙𝐴 → ( { 𝑙 } ∈ 𝒫 𝐴 ∧ { 𝑙 } ∈ Fin ) )
179 elin ( { 𝑙 } ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( { 𝑙 } ∈ 𝒫 𝐴 ∧ { 𝑙 } ∈ Fin ) )
180 178 179 sylibr ( 𝑙𝐴 → { 𝑙 } ∈ ( 𝒫 𝐴 ∩ Fin ) )
181 180 adantl ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) ∧ 𝑙𝐴 ) → { 𝑙 } ∈ ( 𝒫 𝐴 ∩ Fin ) )
182 simplr ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) ∧ 𝑙𝐴 ) → 𝐵 = +∞ )
183 182 oveq2d ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) ∧ 𝑙𝐴 ) → ( ( ♯ ‘ { 𝑙 } ) ·e 𝐵 ) = ( ( ♯ ‘ { 𝑙 } ) ·e +∞ ) )
184 hashsng ( 𝑙𝐴 → ( ♯ ‘ { 𝑙 } ) = 1 )
185 1re 1 ∈ ℝ
186 27 185 sselii 1 ∈ ℝ*
187 184 186 eqeltrdi ( 𝑙𝐴 → ( ♯ ‘ { 𝑙 } ) ∈ ℝ* )
188 0lt1 0 < 1
189 188 184 breqtrrid ( 𝑙𝐴 → 0 < ( ♯ ‘ { 𝑙 } ) )
190 xmulpnf1 ( ( ( ♯ ‘ { 𝑙 } ) ∈ ℝ* ∧ 0 < ( ♯ ‘ { 𝑙 } ) ) → ( ( ♯ ‘ { 𝑙 } ) ·e +∞ ) = +∞ )
191 187 189 190 syl2anc ( 𝑙𝐴 → ( ( ♯ ‘ { 𝑙 } ) ·e +∞ ) = +∞ )
192 191 adantl ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) ∧ 𝑙𝐴 ) → ( ( ♯ ‘ { 𝑙 } ) ·e +∞ ) = +∞ )
193 183 192 eqtr2d ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) ∧ 𝑙𝐴 ) → +∞ = ( ( ♯ ‘ { 𝑙 } ) ·e 𝐵 ) )
194 fveq2 ( 𝑥 = { 𝑙 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑙 } ) )
195 194 oveq1d ( 𝑥 = { 𝑙 } → ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) = ( ( ♯ ‘ { 𝑙 } ) ·e 𝐵 ) )
196 195 rspceeqv ( ( { 𝑙 } ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ +∞ = ( ( ♯ ‘ { 𝑙 } ) ·e 𝐵 ) ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) +∞ = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
197 181 193 196 syl2anc ( ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) ∧ 𝑙𝐴 ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) +∞ = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
198 175 197 exlimddv ( ( ¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞ ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) +∞ = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
199 198 adantll ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = +∞ ) → ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) +∞ = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
200 50 116 elrnmpti ( +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ↔ ∃ 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) +∞ = ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) )
201 199 200 sylibr ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = +∞ ) → +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) )
202 simp-4r ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = +∞ ) → 𝑦 ∈ ℝ )
203 ltpnf ( 𝑦 ∈ ℝ → 𝑦 < +∞ )
204 202 203 syl ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = +∞ ) → 𝑦 < +∞ )
205 breq2 ( 𝑧 = +∞ → ( 𝑦 < 𝑧𝑦 < +∞ ) )
206 205 rspcev ( ( +∞ ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ∧ 𝑦 < +∞ ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 )
207 201 204 206 syl2anc ( ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) ∧ 𝐵 = +∞ ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 )
208 simp-4r ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) → 𝐵 ∈ ( 0 [,] +∞ ) )
209 elxrge02 ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 𝐵 = 0 ∨ 𝐵 ∈ ℝ+𝐵 = +∞ ) )
210 208 209 sylib ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐵 = 0 ∨ 𝐵 ∈ ℝ+𝐵 = +∞ ) )
211 128 173 207 210 mpjao3dan ( ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) ∧ ¬ 𝐴 ∈ Fin ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 )
212 99 211 pm2.61dan ( ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 )
213 212 ex ( ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) ∧ 𝑦 ∈ ℝ ) → ( 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) )
214 213 ralrimiva ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) → ∀ 𝑦 ∈ ℝ ( 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) )
215 supxr2 ( ( ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) ⊆ ℝ* ∧ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∈ ℝ* ) ∧ ( ∀ 𝑦 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 ≤ ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) 𝑦 < 𝑧 ) ) ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) , ℝ* , < ) = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )
216 45 48 80 214 215 syl22anc ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) → sup ( ran ( 𝑥 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ♯ ‘ 𝑥 ) ·e 𝐵 ) ) , ℝ* , < ) = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )
217 25 216 eqtrd ( ( 𝐴𝑉𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘𝐴 𝐵 = ( ( ♯ ‘ 𝐴 ) ·e 𝐵 ) )