| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumcst.1 |
|- F/_ k A |
| 2 |
|
esumcst.2 |
|- F/_ k B |
| 3 |
1
|
nfel1 |
|- F/ k A e. V |
| 4 |
2
|
nfel1 |
|- F/ k B e. ( 0 [,] +oo ) |
| 5 |
3 4
|
nfan |
|- F/ k ( A e. V /\ B e. ( 0 [,] +oo ) ) |
| 6 |
|
simpl |
|- ( ( A e. V /\ B e. ( 0 [,] +oo ) ) -> A e. V ) |
| 7 |
|
simplr |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ k e. A ) -> B e. ( 0 [,] +oo ) ) |
| 8 |
|
xrge0tmd |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. TopMnd |
| 9 |
|
tmdmnd |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) e. TopMnd -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) |
| 10 |
8 9
|
ax-mp |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd |
| 11 |
10
|
a1i |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) |
| 12 |
|
inss2 |
|- ( ~P A i^i Fin ) C_ Fin |
| 13 |
|
simpr |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> x e. ( ~P A i^i Fin ) ) |
| 14 |
12 13
|
sselid |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> x e. Fin ) |
| 15 |
|
simplr |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> B e. ( 0 [,] +oo ) ) |
| 16 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 17 |
|
eqid |
|- ( .g ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( .g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 18 |
2 16 17
|
gsumconstf |
|- ( ( ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd /\ x e. Fin /\ B e. ( 0 [,] +oo ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) = ( ( # ` x ) ( .g ` ( RR*s |`s ( 0 [,] +oo ) ) ) B ) ) |
| 19 |
11 14 15 18
|
syl3anc |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) = ( ( # ` x ) ( .g ` ( RR*s |`s ( 0 [,] +oo ) ) ) B ) ) |
| 20 |
|
hashcl |
|- ( x e. Fin -> ( # ` x ) e. NN0 ) |
| 21 |
14 20
|
syl |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> ( # ` x ) e. NN0 ) |
| 22 |
|
xrge0mulgnn0 |
|- ( ( ( # ` x ) e. NN0 /\ B e. ( 0 [,] +oo ) ) -> ( ( # ` x ) ( .g ` ( RR*s |`s ( 0 [,] +oo ) ) ) B ) = ( ( # ` x ) *e B ) ) |
| 23 |
21 15 22
|
syl2anc |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> ( ( # ` x ) ( .g ` ( RR*s |`s ( 0 [,] +oo ) ) ) B ) = ( ( # ` x ) *e B ) ) |
| 24 |
19 23
|
eqtrd |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. x |-> B ) ) = ( ( # ` x ) *e B ) ) |
| 25 |
5 1 6 7 24
|
esumval |
|- ( ( A e. V /\ B e. ( 0 [,] +oo ) ) -> sum* k e. A B = sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) , RR* , < ) ) |
| 26 |
|
nn0ssre |
|- NN0 C_ RR |
| 27 |
|
ressxr |
|- RR C_ RR* |
| 28 |
26 27
|
sstri |
|- NN0 C_ RR* |
| 29 |
|
pnfxr |
|- +oo e. RR* |
| 30 |
|
snssi |
|- ( +oo e. RR* -> { +oo } C_ RR* ) |
| 31 |
29 30
|
ax-mp |
|- { +oo } C_ RR* |
| 32 |
28 31
|
unssi |
|- ( NN0 u. { +oo } ) C_ RR* |
| 33 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
| 34 |
|
vex |
|- x e. _V |
| 35 |
|
ffvelcdm |
|- ( ( # : _V --> ( NN0 u. { +oo } ) /\ x e. _V ) -> ( # ` x ) e. ( NN0 u. { +oo } ) ) |
| 36 |
33 34 35
|
mp2an |
|- ( # ` x ) e. ( NN0 u. { +oo } ) |
| 37 |
32 36
|
sselii |
|- ( # ` x ) e. RR* |
| 38 |
37
|
a1i |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> ( # ` x ) e. RR* ) |
| 39 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 40 |
|
simpr |
|- ( ( A e. V /\ B e. ( 0 [,] +oo ) ) -> B e. ( 0 [,] +oo ) ) |
| 41 |
39 40
|
sselid |
|- ( ( A e. V /\ B e. ( 0 [,] +oo ) ) -> B e. RR* ) |
| 42 |
41
|
adantr |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> B e. RR* ) |
| 43 |
38 42
|
xmulcld |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> ( ( # ` x ) *e B ) e. RR* ) |
| 44 |
43
|
fmpttd |
|- ( ( A e. V /\ B e. ( 0 [,] +oo ) ) -> ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) : ( ~P A i^i Fin ) --> RR* ) |
| 45 |
44
|
frnd |
|- ( ( A e. V /\ B e. ( 0 [,] +oo ) ) -> ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) C_ RR* ) |
| 46 |
|
hashxrcl |
|- ( A e. V -> ( # ` A ) e. RR* ) |
| 47 |
46
|
adantr |
|- ( ( A e. V /\ B e. ( 0 [,] +oo ) ) -> ( # ` A ) e. RR* ) |
| 48 |
47 41
|
xmulcld |
|- ( ( A e. V /\ B e. ( 0 [,] +oo ) ) -> ( ( # ` A ) *e B ) e. RR* ) |
| 49 |
|
vex |
|- y e. _V |
| 50 |
|
eqid |
|- ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) = ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) |
| 51 |
50
|
elrnmpt |
|- ( y e. _V -> ( y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) <-> E. x e. ( ~P A i^i Fin ) y = ( ( # ` x ) *e B ) ) ) |
| 52 |
49 51
|
ax-mp |
|- ( y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) <-> E. x e. ( ~P A i^i Fin ) y = ( ( # ` x ) *e B ) ) |
| 53 |
52
|
biimpi |
|- ( y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) -> E. x e. ( ~P A i^i Fin ) y = ( ( # ` x ) *e B ) ) |
| 54 |
47
|
adantr |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> ( # ` A ) e. RR* ) |
| 55 |
|
0xr |
|- 0 e. RR* |
| 56 |
55
|
a1i |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> 0 e. RR* ) |
| 57 |
29
|
a1i |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> +oo e. RR* ) |
| 58 |
|
iccgelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,] +oo ) ) -> 0 <_ B ) |
| 59 |
56 57 15 58
|
syl3anc |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> 0 <_ B ) |
| 60 |
42 59
|
jca |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> ( B e. RR* /\ 0 <_ B ) ) |
| 61 |
6
|
adantr |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> A e. V ) |
| 62 |
|
inss1 |
|- ( ~P A i^i Fin ) C_ ~P A |
| 63 |
62
|
sseli |
|- ( x e. ( ~P A i^i Fin ) -> x e. ~P A ) |
| 64 |
|
elpwi |
|- ( x e. ~P A -> x C_ A ) |
| 65 |
13 63 64
|
3syl |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> x C_ A ) |
| 66 |
|
ssdomg |
|- ( A e. V -> ( x C_ A -> x ~<_ A ) ) |
| 67 |
61 65 66
|
sylc |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> x ~<_ A ) |
| 68 |
|
hashdomi |
|- ( x ~<_ A -> ( # ` x ) <_ ( # ` A ) ) |
| 69 |
67 68
|
syl |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> ( # ` x ) <_ ( # ` A ) ) |
| 70 |
|
xlemul1a |
|- ( ( ( ( # ` x ) e. RR* /\ ( # ` A ) e. RR* /\ ( B e. RR* /\ 0 <_ B ) ) /\ ( # ` x ) <_ ( # ` A ) ) -> ( ( # ` x ) *e B ) <_ ( ( # ` A ) *e B ) ) |
| 71 |
38 54 60 69 70
|
syl31anc |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ x e. ( ~P A i^i Fin ) ) -> ( ( # ` x ) *e B ) <_ ( ( # ` A ) *e B ) ) |
| 72 |
71
|
ralrimiva |
|- ( ( A e. V /\ B e. ( 0 [,] +oo ) ) -> A. x e. ( ~P A i^i Fin ) ( ( # ` x ) *e B ) <_ ( ( # ` A ) *e B ) ) |
| 73 |
|
r19.29r |
|- ( ( E. x e. ( ~P A i^i Fin ) y = ( ( # ` x ) *e B ) /\ A. x e. ( ~P A i^i Fin ) ( ( # ` x ) *e B ) <_ ( ( # ` A ) *e B ) ) -> E. x e. ( ~P A i^i Fin ) ( y = ( ( # ` x ) *e B ) /\ ( ( # ` x ) *e B ) <_ ( ( # ` A ) *e B ) ) ) |
| 74 |
53 72 73
|
syl2anr |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) ) -> E. x e. ( ~P A i^i Fin ) ( y = ( ( # ` x ) *e B ) /\ ( ( # ` x ) *e B ) <_ ( ( # ` A ) *e B ) ) ) |
| 75 |
|
simpl |
|- ( ( y = ( ( # ` x ) *e B ) /\ ( ( # ` x ) *e B ) <_ ( ( # ` A ) *e B ) ) -> y = ( ( # ` x ) *e B ) ) |
| 76 |
|
simpr |
|- ( ( y = ( ( # ` x ) *e B ) /\ ( ( # ` x ) *e B ) <_ ( ( # ` A ) *e B ) ) -> ( ( # ` x ) *e B ) <_ ( ( # ` A ) *e B ) ) |
| 77 |
75 76
|
eqbrtrd |
|- ( ( y = ( ( # ` x ) *e B ) /\ ( ( # ` x ) *e B ) <_ ( ( # ` A ) *e B ) ) -> y <_ ( ( # ` A ) *e B ) ) |
| 78 |
77
|
rexlimivw |
|- ( E. x e. ( ~P A i^i Fin ) ( y = ( ( # ` x ) *e B ) /\ ( ( # ` x ) *e B ) <_ ( ( # ` A ) *e B ) ) -> y <_ ( ( # ` A ) *e B ) ) |
| 79 |
74 78
|
syl |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) ) -> y <_ ( ( # ` A ) *e B ) ) |
| 80 |
79
|
ralrimiva |
|- ( ( A e. V /\ B e. ( 0 [,] +oo ) ) -> A. y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y <_ ( ( # ` A ) *e B ) ) |
| 81 |
|
pwidg |
|- ( A e. Fin -> A e. ~P A ) |
| 82 |
81
|
ancri |
|- ( A e. Fin -> ( A e. ~P A /\ A e. Fin ) ) |
| 83 |
|
elin |
|- ( A e. ( ~P A i^i Fin ) <-> ( A e. ~P A /\ A e. Fin ) ) |
| 84 |
82 83
|
sylibr |
|- ( A e. Fin -> A e. ( ~P A i^i Fin ) ) |
| 85 |
|
eqid |
|- ( ( # ` A ) *e B ) = ( ( # ` A ) *e B ) |
| 86 |
|
fveq2 |
|- ( x = A -> ( # ` x ) = ( # ` A ) ) |
| 87 |
86
|
oveq1d |
|- ( x = A -> ( ( # ` x ) *e B ) = ( ( # ` A ) *e B ) ) |
| 88 |
87
|
rspceeqv |
|- ( ( A e. ( ~P A i^i Fin ) /\ ( ( # ` A ) *e B ) = ( ( # ` A ) *e B ) ) -> E. x e. ( ~P A i^i Fin ) ( ( # ` A ) *e B ) = ( ( # ` x ) *e B ) ) |
| 89 |
85 88
|
mpan2 |
|- ( A e. ( ~P A i^i Fin ) -> E. x e. ( ~P A i^i Fin ) ( ( # ` A ) *e B ) = ( ( # ` x ) *e B ) ) |
| 90 |
|
ovex |
|- ( ( # ` A ) *e B ) e. _V |
| 91 |
50
|
elrnmpt |
|- ( ( ( # ` A ) *e B ) e. _V -> ( ( ( # ` A ) *e B ) e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) <-> E. x e. ( ~P A i^i Fin ) ( ( # ` A ) *e B ) = ( ( # ` x ) *e B ) ) ) |
| 92 |
90 91
|
ax-mp |
|- ( ( ( # ` A ) *e B ) e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) <-> E. x e. ( ~P A i^i Fin ) ( ( # ` A ) *e B ) = ( ( # ` x ) *e B ) ) |
| 93 |
89 92
|
sylibr |
|- ( A e. ( ~P A i^i Fin ) -> ( ( # ` A ) *e B ) e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) ) |
| 94 |
84 93
|
syl |
|- ( A e. Fin -> ( ( # ` A ) *e B ) e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) ) |
| 95 |
94
|
adantl |
|- ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ A e. Fin ) -> ( ( # ` A ) *e B ) e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) ) |
| 96 |
|
simplr |
|- ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ A e. Fin ) -> y < ( ( # ` A ) *e B ) ) |
| 97 |
|
breq2 |
|- ( z = ( ( # ` A ) *e B ) -> ( y < z <-> y < ( ( # ` A ) *e B ) ) ) |
| 98 |
97
|
rspcev |
|- ( ( ( ( # ` A ) *e B ) e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) /\ y < ( ( # ` A ) *e B ) ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) |
| 99 |
95 96 98
|
syl2anc |
|- ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ A e. Fin ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) |
| 100 |
|
0elpw |
|- (/) e. ~P A |
| 101 |
|
0fi |
|- (/) e. Fin |
| 102 |
|
elin |
|- ( (/) e. ( ~P A i^i Fin ) <-> ( (/) e. ~P A /\ (/) e. Fin ) ) |
| 103 |
100 101 102
|
mpbir2an |
|- (/) e. ( ~P A i^i Fin ) |
| 104 |
103
|
a1i |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = 0 ) -> (/) e. ( ~P A i^i Fin ) ) |
| 105 |
|
simpr |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = 0 ) -> B = 0 ) |
| 106 |
105
|
oveq2d |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = 0 ) -> ( ( # ` (/) ) *e B ) = ( ( # ` (/) ) *e 0 ) ) |
| 107 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 108 |
107 55
|
eqeltri |
|- ( # ` (/) ) e. RR* |
| 109 |
|
xmul01 |
|- ( ( # ` (/) ) e. RR* -> ( ( # ` (/) ) *e 0 ) = 0 ) |
| 110 |
108 109
|
ax-mp |
|- ( ( # ` (/) ) *e 0 ) = 0 |
| 111 |
106 110
|
eqtr2di |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = 0 ) -> 0 = ( ( # ` (/) ) *e B ) ) |
| 112 |
|
fveq2 |
|- ( x = (/) -> ( # ` x ) = ( # ` (/) ) ) |
| 113 |
112
|
oveq1d |
|- ( x = (/) -> ( ( # ` x ) *e B ) = ( ( # ` (/) ) *e B ) ) |
| 114 |
113
|
rspceeqv |
|- ( ( (/) e. ( ~P A i^i Fin ) /\ 0 = ( ( # ` (/) ) *e B ) ) -> E. x e. ( ~P A i^i Fin ) 0 = ( ( # ` x ) *e B ) ) |
| 115 |
104 111 114
|
syl2anc |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = 0 ) -> E. x e. ( ~P A i^i Fin ) 0 = ( ( # ` x ) *e B ) ) |
| 116 |
|
ovex |
|- ( ( # ` x ) *e B ) e. _V |
| 117 |
50 116
|
elrnmpti |
|- ( 0 e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) <-> E. x e. ( ~P A i^i Fin ) 0 = ( ( # ` x ) *e B ) ) |
| 118 |
115 117
|
sylibr |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = 0 ) -> 0 e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) ) |
| 119 |
|
simpllr |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = 0 ) -> y < ( ( # ` A ) *e B ) ) |
| 120 |
105
|
oveq2d |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = 0 ) -> ( ( # ` A ) *e B ) = ( ( # ` A ) *e 0 ) ) |
| 121 |
47
|
ad4antr |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = 0 ) -> ( # ` A ) e. RR* ) |
| 122 |
|
xmul01 |
|- ( ( # ` A ) e. RR* -> ( ( # ` A ) *e 0 ) = 0 ) |
| 123 |
121 122
|
syl |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = 0 ) -> ( ( # ` A ) *e 0 ) = 0 ) |
| 124 |
120 123
|
eqtrd |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = 0 ) -> ( ( # ` A ) *e B ) = 0 ) |
| 125 |
119 124
|
breqtrd |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = 0 ) -> y < 0 ) |
| 126 |
|
breq2 |
|- ( z = 0 -> ( y < z <-> y < 0 ) ) |
| 127 |
126
|
rspcev |
|- ( ( 0 e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) /\ y < 0 ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) |
| 128 |
118 125 127
|
syl2anc |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = 0 ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) |
| 129 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> a e. ~P A ) |
| 130 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> ( # ` a ) = n ) |
| 131 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> n e. NN ) |
| 132 |
130 131
|
eqeltrd |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> ( # ` a ) e. NN ) |
| 133 |
|
nnnn0 |
|- ( ( # ` a ) e. NN -> ( # ` a ) e. NN0 ) |
| 134 |
|
vex |
|- a e. _V |
| 135 |
|
hashclb |
|- ( a e. _V -> ( a e. Fin <-> ( # ` a ) e. NN0 ) ) |
| 136 |
134 135
|
ax-mp |
|- ( a e. Fin <-> ( # ` a ) e. NN0 ) |
| 137 |
133 136
|
sylibr |
|- ( ( # ` a ) e. NN -> a e. Fin ) |
| 138 |
132 137
|
syl |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> a e. Fin ) |
| 139 |
129 138
|
elind |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> a e. ( ~P A i^i Fin ) ) |
| 140 |
|
eqidd |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> ( ( # ` a ) *e B ) = ( ( # ` a ) *e B ) ) |
| 141 |
|
fveq2 |
|- ( x = a -> ( # ` x ) = ( # ` a ) ) |
| 142 |
141
|
oveq1d |
|- ( x = a -> ( ( # ` x ) *e B ) = ( ( # ` a ) *e B ) ) |
| 143 |
142
|
rspceeqv |
|- ( ( a e. ( ~P A i^i Fin ) /\ ( ( # ` a ) *e B ) = ( ( # ` a ) *e B ) ) -> E. x e. ( ~P A i^i Fin ) ( ( # ` a ) *e B ) = ( ( # ` x ) *e B ) ) |
| 144 |
139 140 143
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> E. x e. ( ~P A i^i Fin ) ( ( # ` a ) *e B ) = ( ( # ` x ) *e B ) ) |
| 145 |
50 116
|
elrnmpti |
|- ( ( ( # ` a ) *e B ) e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) <-> E. x e. ( ~P A i^i Fin ) ( ( # ` a ) *e B ) = ( ( # ` x ) *e B ) ) |
| 146 |
144 145
|
sylibr |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> ( ( # ` a ) *e B ) e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) ) |
| 147 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> ( y / B ) < n ) |
| 148 |
|
simp-8r |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> y e. RR ) |
| 149 |
131
|
nnred |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> n e. RR ) |
| 150 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> B e. RR+ ) |
| 151 |
148 149 150
|
ltdivmul2d |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> ( ( y / B ) < n <-> y < ( n x. B ) ) ) |
| 152 |
147 151
|
mpbid |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> y < ( n x. B ) ) |
| 153 |
130
|
oveq1d |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> ( ( # ` a ) *e B ) = ( n *e B ) ) |
| 154 |
150
|
rpred |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> B e. RR ) |
| 155 |
|
rexmul |
|- ( ( n e. RR /\ B e. RR ) -> ( n *e B ) = ( n x. B ) ) |
| 156 |
149 154 155
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> ( n *e B ) = ( n x. B ) ) |
| 157 |
153 156
|
eqtrd |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> ( ( # ` a ) *e B ) = ( n x. B ) ) |
| 158 |
152 157
|
breqtrrd |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> y < ( ( # ` a ) *e B ) ) |
| 159 |
|
breq2 |
|- ( z = ( ( # ` a ) *e B ) -> ( y < z <-> y < ( ( # ` a ) *e B ) ) ) |
| 160 |
159
|
rspcev |
|- ( ( ( ( # ` a ) *e B ) e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) /\ y < ( ( # ` a ) *e B ) ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) |
| 161 |
146 158 160
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) /\ a e. ~P A ) /\ ( # ` a ) = n ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) |
| 162 |
161
|
rexlimdva2 |
|- ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( y / B ) < n ) -> ( E. a e. ~P A ( # ` a ) = n -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) ) |
| 163 |
162
|
impr |
|- ( ( ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) /\ n e. NN ) /\ ( ( y / B ) < n /\ E. a e. ~P A ( # ` a ) = n ) ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) |
| 164 |
|
simp-4r |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) -> y e. RR ) |
| 165 |
|
simpr |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) -> B e. RR+ ) |
| 166 |
164 165
|
rerpdivcld |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) -> ( y / B ) e. RR ) |
| 167 |
|
arch |
|- ( ( y / B ) e. RR -> E. n e. NN ( y / B ) < n ) |
| 168 |
166 167
|
syl |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) -> E. n e. NN ( y / B ) < n ) |
| 169 |
|
ishashinf |
|- ( -. A e. Fin -> A. n e. NN E. a e. ~P A ( # ` a ) = n ) |
| 170 |
169
|
ad2antlr |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) -> A. n e. NN E. a e. ~P A ( # ` a ) = n ) |
| 171 |
|
r19.29r |
|- ( ( E. n e. NN ( y / B ) < n /\ A. n e. NN E. a e. ~P A ( # ` a ) = n ) -> E. n e. NN ( ( y / B ) < n /\ E. a e. ~P A ( # ` a ) = n ) ) |
| 172 |
168 170 171
|
syl2anc |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) -> E. n e. NN ( ( y / B ) < n /\ E. a e. ~P A ( # ` a ) = n ) ) |
| 173 |
163 172
|
r19.29a |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B e. RR+ ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) |
| 174 |
|
nfielex |
|- ( -. A e. Fin -> E. l l e. A ) |
| 175 |
174
|
adantr |
|- ( ( -. A e. Fin /\ B = +oo ) -> E. l l e. A ) |
| 176 |
|
snelpwi |
|- ( l e. A -> { l } e. ~P A ) |
| 177 |
|
snfi |
|- { l } e. Fin |
| 178 |
176 177
|
jctir |
|- ( l e. A -> ( { l } e. ~P A /\ { l } e. Fin ) ) |
| 179 |
|
elin |
|- ( { l } e. ( ~P A i^i Fin ) <-> ( { l } e. ~P A /\ { l } e. Fin ) ) |
| 180 |
178 179
|
sylibr |
|- ( l e. A -> { l } e. ( ~P A i^i Fin ) ) |
| 181 |
180
|
adantl |
|- ( ( ( -. A e. Fin /\ B = +oo ) /\ l e. A ) -> { l } e. ( ~P A i^i Fin ) ) |
| 182 |
|
simplr |
|- ( ( ( -. A e. Fin /\ B = +oo ) /\ l e. A ) -> B = +oo ) |
| 183 |
182
|
oveq2d |
|- ( ( ( -. A e. Fin /\ B = +oo ) /\ l e. A ) -> ( ( # ` { l } ) *e B ) = ( ( # ` { l } ) *e +oo ) ) |
| 184 |
|
hashsng |
|- ( l e. A -> ( # ` { l } ) = 1 ) |
| 185 |
|
1re |
|- 1 e. RR |
| 186 |
27 185
|
sselii |
|- 1 e. RR* |
| 187 |
184 186
|
eqeltrdi |
|- ( l e. A -> ( # ` { l } ) e. RR* ) |
| 188 |
|
0lt1 |
|- 0 < 1 |
| 189 |
188 184
|
breqtrrid |
|- ( l e. A -> 0 < ( # ` { l } ) ) |
| 190 |
|
xmulpnf1 |
|- ( ( ( # ` { l } ) e. RR* /\ 0 < ( # ` { l } ) ) -> ( ( # ` { l } ) *e +oo ) = +oo ) |
| 191 |
187 189 190
|
syl2anc |
|- ( l e. A -> ( ( # ` { l } ) *e +oo ) = +oo ) |
| 192 |
191
|
adantl |
|- ( ( ( -. A e. Fin /\ B = +oo ) /\ l e. A ) -> ( ( # ` { l } ) *e +oo ) = +oo ) |
| 193 |
183 192
|
eqtr2d |
|- ( ( ( -. A e. Fin /\ B = +oo ) /\ l e. A ) -> +oo = ( ( # ` { l } ) *e B ) ) |
| 194 |
|
fveq2 |
|- ( x = { l } -> ( # ` x ) = ( # ` { l } ) ) |
| 195 |
194
|
oveq1d |
|- ( x = { l } -> ( ( # ` x ) *e B ) = ( ( # ` { l } ) *e B ) ) |
| 196 |
195
|
rspceeqv |
|- ( ( { l } e. ( ~P A i^i Fin ) /\ +oo = ( ( # ` { l } ) *e B ) ) -> E. x e. ( ~P A i^i Fin ) +oo = ( ( # ` x ) *e B ) ) |
| 197 |
181 193 196
|
syl2anc |
|- ( ( ( -. A e. Fin /\ B = +oo ) /\ l e. A ) -> E. x e. ( ~P A i^i Fin ) +oo = ( ( # ` x ) *e B ) ) |
| 198 |
175 197
|
exlimddv |
|- ( ( -. A e. Fin /\ B = +oo ) -> E. x e. ( ~P A i^i Fin ) +oo = ( ( # ` x ) *e B ) ) |
| 199 |
198
|
adantll |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = +oo ) -> E. x e. ( ~P A i^i Fin ) +oo = ( ( # ` x ) *e B ) ) |
| 200 |
50 116
|
elrnmpti |
|- ( +oo e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) <-> E. x e. ( ~P A i^i Fin ) +oo = ( ( # ` x ) *e B ) ) |
| 201 |
199 200
|
sylibr |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = +oo ) -> +oo e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) ) |
| 202 |
|
simp-4r |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = +oo ) -> y e. RR ) |
| 203 |
|
ltpnf |
|- ( y e. RR -> y < +oo ) |
| 204 |
202 203
|
syl |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = +oo ) -> y < +oo ) |
| 205 |
|
breq2 |
|- ( z = +oo -> ( y < z <-> y < +oo ) ) |
| 206 |
205
|
rspcev |
|- ( ( +oo e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) /\ y < +oo ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) |
| 207 |
201 204 206
|
syl2anc |
|- ( ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) /\ B = +oo ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) |
| 208 |
|
simp-4r |
|- ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) -> B e. ( 0 [,] +oo ) ) |
| 209 |
|
elxrge02 |
|- ( B e. ( 0 [,] +oo ) <-> ( B = 0 \/ B e. RR+ \/ B = +oo ) ) |
| 210 |
208 209
|
sylib |
|- ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) -> ( B = 0 \/ B e. RR+ \/ B = +oo ) ) |
| 211 |
128 173 207 210
|
mpjao3dan |
|- ( ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) /\ -. A e. Fin ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) |
| 212 |
99 211
|
pm2.61dan |
|- ( ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) /\ y < ( ( # ` A ) *e B ) ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) |
| 213 |
212
|
ex |
|- ( ( ( A e. V /\ B e. ( 0 [,] +oo ) ) /\ y e. RR ) -> ( y < ( ( # ` A ) *e B ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) ) |
| 214 |
213
|
ralrimiva |
|- ( ( A e. V /\ B e. ( 0 [,] +oo ) ) -> A. y e. RR ( y < ( ( # ` A ) *e B ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) ) |
| 215 |
|
supxr2 |
|- ( ( ( ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) C_ RR* /\ ( ( # ` A ) *e B ) e. RR* ) /\ ( A. y e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y <_ ( ( # ` A ) *e B ) /\ A. y e. RR ( y < ( ( # ` A ) *e B ) -> E. z e. ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) y < z ) ) ) -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) , RR* , < ) = ( ( # ` A ) *e B ) ) |
| 216 |
45 48 80 214 215
|
syl22anc |
|- ( ( A e. V /\ B e. ( 0 [,] +oo ) ) -> sup ( ran ( x e. ( ~P A i^i Fin ) |-> ( ( # ` x ) *e B ) ) , RR* , < ) = ( ( # ` A ) *e B ) ) |
| 217 |
25 216
|
eqtrd |
|- ( ( A e. V /\ B e. ( 0 [,] +oo ) ) -> sum* k e. A B = ( ( # ` A ) *e B ) ) |