| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
|- ( n e. NN -> ( 1 ... n ) e. Fin ) |
| 2 |
|
ficardom |
|- ( ( 1 ... n ) e. Fin -> ( card ` ( 1 ... n ) ) e. _om ) |
| 3 |
1 2
|
syl |
|- ( n e. NN -> ( card ` ( 1 ... n ) ) e. _om ) |
| 4 |
|
isinf |
|- ( -. A e. Fin -> A. a e. _om E. x ( x C_ A /\ x ~~ a ) ) |
| 5 |
|
breq2 |
|- ( a = ( card ` ( 1 ... n ) ) -> ( x ~~ a <-> x ~~ ( card ` ( 1 ... n ) ) ) ) |
| 6 |
5
|
anbi2d |
|- ( a = ( card ` ( 1 ... n ) ) -> ( ( x C_ A /\ x ~~ a ) <-> ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) ) ) |
| 7 |
6
|
exbidv |
|- ( a = ( card ` ( 1 ... n ) ) -> ( E. x ( x C_ A /\ x ~~ a ) <-> E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) ) ) |
| 8 |
7
|
rspcva |
|- ( ( ( card ` ( 1 ... n ) ) e. _om /\ A. a e. _om E. x ( x C_ A /\ x ~~ a ) ) -> E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) ) |
| 9 |
3 4 8
|
syl2anr |
|- ( ( -. A e. Fin /\ n e. NN ) -> E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) ) |
| 10 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
| 11 |
10
|
biimpri |
|- ( x C_ A -> x e. ~P A ) |
| 12 |
11
|
a1i |
|- ( ( -. A e. Fin /\ n e. NN ) -> ( x C_ A -> x e. ~P A ) ) |
| 13 |
|
hasheni |
|- ( x ~~ ( card ` ( 1 ... n ) ) -> ( # ` x ) = ( # ` ( card ` ( 1 ... n ) ) ) ) |
| 14 |
13
|
adantl |
|- ( ( ( -. A e. Fin /\ n e. NN ) /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( # ` x ) = ( # ` ( card ` ( 1 ... n ) ) ) ) |
| 15 |
|
hashcard |
|- ( ( 1 ... n ) e. Fin -> ( # ` ( card ` ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) ) |
| 16 |
1 15
|
syl |
|- ( n e. NN -> ( # ` ( card ` ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) ) |
| 17 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 18 |
|
hashfz1 |
|- ( n e. NN0 -> ( # ` ( 1 ... n ) ) = n ) |
| 19 |
17 18
|
syl |
|- ( n e. NN -> ( # ` ( 1 ... n ) ) = n ) |
| 20 |
16 19
|
eqtrd |
|- ( n e. NN -> ( # ` ( card ` ( 1 ... n ) ) ) = n ) |
| 21 |
20
|
ad2antlr |
|- ( ( ( -. A e. Fin /\ n e. NN ) /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( # ` ( card ` ( 1 ... n ) ) ) = n ) |
| 22 |
14 21
|
eqtrd |
|- ( ( ( -. A e. Fin /\ n e. NN ) /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( # ` x ) = n ) |
| 23 |
22
|
ex |
|- ( ( -. A e. Fin /\ n e. NN ) -> ( x ~~ ( card ` ( 1 ... n ) ) -> ( # ` x ) = n ) ) |
| 24 |
12 23
|
anim12d |
|- ( ( -. A e. Fin /\ n e. NN ) -> ( ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( x e. ~P A /\ ( # ` x ) = n ) ) ) |
| 25 |
24
|
eximdv |
|- ( ( -. A e. Fin /\ n e. NN ) -> ( E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) -> E. x ( x e. ~P A /\ ( # ` x ) = n ) ) ) |
| 26 |
9 25
|
mpd |
|- ( ( -. A e. Fin /\ n e. NN ) -> E. x ( x e. ~P A /\ ( # ` x ) = n ) ) |
| 27 |
|
df-rex |
|- ( E. x e. ~P A ( # ` x ) = n <-> E. x ( x e. ~P A /\ ( # ` x ) = n ) ) |
| 28 |
26 27
|
sylibr |
|- ( ( -. A e. Fin /\ n e. NN ) -> E. x e. ~P A ( # ` x ) = n ) |
| 29 |
28
|
ralrimiva |
|- ( -. A e. Fin -> A. n e. NN E. x e. ~P A ( # ` x ) = n ) |