| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
| 2 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 3 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
| 4 |
2 3
|
sseqtri |
|- ( 0 [,] +oo ) C_ ( Base ` RR*s ) |
| 5 |
|
eqid |
|- ( .g ` RR*s ) = ( .g ` RR*s ) |
| 6 |
|
eqid |
|- ( invg ` RR*s ) = ( invg ` RR*s ) |
| 7 |
|
xrs0 |
|- 0 = ( 0g ` RR*s ) |
| 8 |
|
xrge00 |
|- 0 = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 9 |
7 8
|
eqtr3i |
|- ( 0g ` RR*s ) = ( 0g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 10 |
1 4 5 6 9
|
ressmulgnn0 |
|- ( ( A e. NN0 /\ B e. ( 0 [,] +oo ) ) -> ( A ( .g ` ( RR*s |`s ( 0 [,] +oo ) ) ) B ) = ( A ( .g ` RR*s ) B ) ) |
| 11 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
| 12 |
|
eliccxr |
|- ( B e. ( 0 [,] +oo ) -> B e. RR* ) |
| 13 |
|
xrsmulgzz |
|- ( ( A e. ZZ /\ B e. RR* ) -> ( A ( .g ` RR*s ) B ) = ( A *e B ) ) |
| 14 |
11 12 13
|
syl2an |
|- ( ( A e. NN0 /\ B e. ( 0 [,] +oo ) ) -> ( A ( .g ` RR*s ) B ) = ( A *e B ) ) |
| 15 |
10 14
|
eqtrd |
|- ( ( A e. NN0 /\ B e. ( 0 [,] +oo ) ) -> ( A ( .g ` ( RR*s |`s ( 0 [,] +oo ) ) ) B ) = ( A *e B ) ) |