| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 2 |
|
simp1 |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> A e. ( 0 [,] +oo ) ) |
| 3 |
1 2
|
sselid |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> A e. RR* ) |
| 4 |
|
0xr |
|- 0 e. RR* |
| 5 |
4
|
a1i |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> 0 e. RR* ) |
| 6 |
|
pnfxr |
|- +oo e. RR* |
| 7 |
6
|
a1i |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> +oo e. RR* ) |
| 8 |
|
elicc4 |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ A e. RR* ) -> ( A e. ( 0 [,] +oo ) <-> ( 0 <_ A /\ A <_ +oo ) ) ) |
| 9 |
5 7 3 8
|
syl3anc |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( A e. ( 0 [,] +oo ) <-> ( 0 <_ A /\ A <_ +oo ) ) ) |
| 10 |
2 9
|
mpbid |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( 0 <_ A /\ A <_ +oo ) ) |
| 11 |
10
|
simpld |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> 0 <_ A ) |
| 12 |
|
ge0nemnf |
|- ( ( A e. RR* /\ 0 <_ A ) -> A =/= -oo ) |
| 13 |
3 11 12
|
syl2anc |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> A =/= -oo ) |
| 14 |
|
simp2 |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> B e. ( 0 [,] +oo ) ) |
| 15 |
1 14
|
sselid |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> B e. RR* ) |
| 16 |
|
elicc4 |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ B e. RR* ) -> ( B e. ( 0 [,] +oo ) <-> ( 0 <_ B /\ B <_ +oo ) ) ) |
| 17 |
5 7 15 16
|
syl3anc |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( B e. ( 0 [,] +oo ) <-> ( 0 <_ B /\ B <_ +oo ) ) ) |
| 18 |
14 17
|
mpbid |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( 0 <_ B /\ B <_ +oo ) ) |
| 19 |
18
|
simpld |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> 0 <_ B ) |
| 20 |
|
ge0nemnf |
|- ( ( B e. RR* /\ 0 <_ B ) -> B =/= -oo ) |
| 21 |
15 19 20
|
syl2anc |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> B =/= -oo ) |
| 22 |
|
simp3 |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> C e. ( 0 [,] +oo ) ) |
| 23 |
1 22
|
sselid |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> C e. RR* ) |
| 24 |
|
elicc4 |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ C e. RR* ) -> ( C e. ( 0 [,] +oo ) <-> ( 0 <_ C /\ C <_ +oo ) ) ) |
| 25 |
5 7 23 24
|
syl3anc |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( C e. ( 0 [,] +oo ) <-> ( 0 <_ C /\ C <_ +oo ) ) ) |
| 26 |
22 25
|
mpbid |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( 0 <_ C /\ C <_ +oo ) ) |
| 27 |
26
|
simpld |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> 0 <_ C ) |
| 28 |
|
ge0nemnf |
|- ( ( C e. RR* /\ 0 <_ C ) -> C =/= -oo ) |
| 29 |
23 27 28
|
syl2anc |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> C =/= -oo ) |
| 30 |
|
xaddass |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |
| 31 |
3 13 15 21 23 29 30
|
syl222anc |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |