| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
| 3 |
1 2
|
sselid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐴 ∈ ℝ* ) |
| 4 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 5 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 0 ∈ ℝ* ) |
| 6 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 7 |
6
|
a1i |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → +∞ ∈ ℝ* ) |
| 8 |
|
elicc4 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞ ) ) ) |
| 9 |
5 7 3 8
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞ ) ) ) |
| 10 |
2 9
|
mpbid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 0 ≤ 𝐴 ∧ 𝐴 ≤ +∞ ) ) |
| 11 |
10
|
simpld |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐴 ) |
| 12 |
|
ge0nemnf |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) → 𝐴 ≠ -∞ ) |
| 13 |
3 11 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐴 ≠ -∞ ) |
| 14 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 15 |
1 14
|
sselid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐵 ∈ ℝ* ) |
| 16 |
|
elicc4 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 0 ≤ 𝐵 ∧ 𝐵 ≤ +∞ ) ) ) |
| 17 |
5 7 15 16
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐵 ∈ ( 0 [,] +∞ ) ↔ ( 0 ≤ 𝐵 ∧ 𝐵 ≤ +∞ ) ) ) |
| 18 |
14 17
|
mpbid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 0 ≤ 𝐵 ∧ 𝐵 ≤ +∞ ) ) |
| 19 |
18
|
simpld |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐵 ) |
| 20 |
|
ge0nemnf |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ) → 𝐵 ≠ -∞ ) |
| 21 |
15 19 20
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐵 ≠ -∞ ) |
| 22 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 23 |
1 22
|
sselid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐶 ∈ ℝ* ) |
| 24 |
|
elicc4 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( 0 ≤ 𝐶 ∧ 𝐶 ≤ +∞ ) ) ) |
| 25 |
5 7 23 24
|
syl3anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 𝐶 ∈ ( 0 [,] +∞ ) ↔ ( 0 ≤ 𝐶 ∧ 𝐶 ≤ +∞ ) ) ) |
| 26 |
22 25
|
mpbid |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 0 ≤ 𝐶 ∧ 𝐶 ≤ +∞ ) ) |
| 27 |
26
|
simpld |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝐶 ) |
| 28 |
|
ge0nemnf |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) → 𝐶 ≠ -∞ ) |
| 29 |
23 27 28
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → 𝐶 ≠ -∞ ) |
| 30 |
|
xaddass |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ∧ ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) ∧ ( 𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞ ) ) → ( ( 𝐴 +𝑒 𝐵 ) +𝑒 𝐶 ) = ( 𝐴 +𝑒 ( 𝐵 +𝑒 𝐶 ) ) ) |
| 31 |
3 13 15 21 23 29 30
|
syl222anc |
⊢ ( ( 𝐴 ∈ ( 0 [,] +∞ ) ∧ 𝐵 ∈ ( 0 [,] +∞ ) ∧ 𝐶 ∈ ( 0 [,] +∞ ) ) → ( ( 𝐴 +𝑒 𝐵 ) +𝑒 𝐶 ) = ( 𝐴 +𝑒 ( 𝐵 +𝑒 𝐶 ) ) ) |