Metamath Proof Explorer


Theorem xrge0addass

Description: Associativity of extended nonnegative real addition. (Contributed by Thierry Arnoux, 8-Jun-2017)

Ref Expression
Assertion xrge0addass A0+∞B0+∞C0+∞A+𝑒B+𝑒C=A+𝑒B+𝑒C

Proof

Step Hyp Ref Expression
1 iccssxr 0+∞*
2 simp1 A0+∞B0+∞C0+∞A0+∞
3 1 2 sselid A0+∞B0+∞C0+∞A*
4 0xr 0*
5 4 a1i A0+∞B0+∞C0+∞0*
6 pnfxr +∞*
7 6 a1i A0+∞B0+∞C0+∞+∞*
8 elicc4 0*+∞*A*A0+∞0AA+∞
9 5 7 3 8 syl3anc A0+∞B0+∞C0+∞A0+∞0AA+∞
10 2 9 mpbid A0+∞B0+∞C0+∞0AA+∞
11 10 simpld A0+∞B0+∞C0+∞0A
12 ge0nemnf A*0AA−∞
13 3 11 12 syl2anc A0+∞B0+∞C0+∞A−∞
14 simp2 A0+∞B0+∞C0+∞B0+∞
15 1 14 sselid A0+∞B0+∞C0+∞B*
16 elicc4 0*+∞*B*B0+∞0BB+∞
17 5 7 15 16 syl3anc A0+∞B0+∞C0+∞B0+∞0BB+∞
18 14 17 mpbid A0+∞B0+∞C0+∞0BB+∞
19 18 simpld A0+∞B0+∞C0+∞0B
20 ge0nemnf B*0BB−∞
21 15 19 20 syl2anc A0+∞B0+∞C0+∞B−∞
22 simp3 A0+∞B0+∞C0+∞C0+∞
23 1 22 sselid A0+∞B0+∞C0+∞C*
24 elicc4 0*+∞*C*C0+∞0CC+∞
25 5 7 23 24 syl3anc A0+∞B0+∞C0+∞C0+∞0CC+∞
26 22 25 mpbid A0+∞B0+∞C0+∞0CC+∞
27 26 simpld A0+∞B0+∞C0+∞0C
28 ge0nemnf C*0CC−∞
29 23 27 28 syl2anc A0+∞B0+∞C0+∞C−∞
30 xaddass A*A−∞B*B−∞C*C−∞A+𝑒B+𝑒C=A+𝑒B+𝑒C
31 3 13 15 21 23 29 30 syl222anc A0+∞B0+∞C0+∞A+𝑒B+𝑒C=A+𝑒B+𝑒C