Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
|- 0 e. RR* |
2 |
|
pnfxr |
|- +oo e. RR* |
3 |
|
0lepnf |
|- 0 <_ +oo |
4 |
|
eliccioo |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> ( A e. ( 0 [,] +oo ) <-> ( A = 0 \/ A e. ( 0 (,) +oo ) \/ A = +oo ) ) ) |
5 |
1 2 3 4
|
mp3an |
|- ( A e. ( 0 [,] +oo ) <-> ( A = 0 \/ A e. ( 0 (,) +oo ) \/ A = +oo ) ) |
6 |
|
biid |
|- ( A = 0 <-> A = 0 ) |
7 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
8 |
7
|
eleq2i |
|- ( A e. ( 0 (,) +oo ) <-> A e. RR+ ) |
9 |
|
biid |
|- ( A = +oo <-> A = +oo ) |
10 |
6 8 9
|
3orbi123i |
|- ( ( A = 0 \/ A e. ( 0 (,) +oo ) \/ A = +oo ) <-> ( A = 0 \/ A e. RR+ \/ A = +oo ) ) |
11 |
5 10
|
bitri |
|- ( A e. ( 0 [,] +oo ) <-> ( A = 0 \/ A e. RR+ \/ A = +oo ) ) |