| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prunioo |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( ( A (,) B ) u. { A , B } ) = ( A [,] B ) ) |
| 2 |
1
|
eleq2d |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( C e. ( ( A (,) B ) u. { A , B } ) <-> C e. ( A [,] B ) ) ) |
| 3 |
2
|
biimpar |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ C e. ( A [,] B ) ) -> C e. ( ( A (,) B ) u. { A , B } ) ) |
| 4 |
|
elun |
|- ( C e. ( ( A (,) B ) u. { A , B } ) <-> ( C e. ( A (,) B ) \/ C e. { A , B } ) ) |
| 5 |
|
elprg |
|- ( C e. ( A [,] B ) -> ( C e. { A , B } <-> ( C = A \/ C = B ) ) ) |
| 6 |
5
|
orbi2d |
|- ( C e. ( A [,] B ) -> ( ( C e. ( A (,) B ) \/ C e. { A , B } ) <-> ( C e. ( A (,) B ) \/ ( C = A \/ C = B ) ) ) ) |
| 7 |
4 6
|
bitrid |
|- ( C e. ( A [,] B ) -> ( C e. ( ( A (,) B ) u. { A , B } ) <-> ( C e. ( A (,) B ) \/ ( C = A \/ C = B ) ) ) ) |
| 8 |
7
|
adantl |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ C e. ( A [,] B ) ) -> ( C e. ( ( A (,) B ) u. { A , B } ) <-> ( C e. ( A (,) B ) \/ ( C = A \/ C = B ) ) ) ) |
| 9 |
3 8
|
mpbid |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ C e. ( A [,] B ) ) -> ( C e. ( A (,) B ) \/ ( C = A \/ C = B ) ) ) |
| 10 |
|
3orass |
|- ( ( C e. ( A (,) B ) \/ C = A \/ C = B ) <-> ( C e. ( A (,) B ) \/ ( C = A \/ C = B ) ) ) |
| 11 |
|
3orcoma |
|- ( ( C e. ( A (,) B ) \/ C = A \/ C = B ) <-> ( C = A \/ C e. ( A (,) B ) \/ C = B ) ) |
| 12 |
10 11
|
bitr3i |
|- ( ( C e. ( A (,) B ) \/ ( C = A \/ C = B ) ) <-> ( C = A \/ C e. ( A (,) B ) \/ C = B ) ) |
| 13 |
9 12
|
sylib |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ C e. ( A [,] B ) ) -> ( C = A \/ C e. ( A (,) B ) \/ C = B ) ) |
| 14 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
| 15 |
14
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ C = A ) -> A e. ( A [,] B ) ) |
| 16 |
|
eleq1 |
|- ( C = A -> ( C e. ( A [,] B ) <-> A e. ( A [,] B ) ) ) |
| 17 |
16
|
adantl |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ C = A ) -> ( C e. ( A [,] B ) <-> A e. ( A [,] B ) ) ) |
| 18 |
15 17
|
mpbird |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ C = A ) -> C e. ( A [,] B ) ) |
| 19 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 20 |
19
|
sseli |
|- ( C e. ( A (,) B ) -> C e. ( A [,] B ) ) |
| 21 |
20
|
adantl |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ C e. ( A (,) B ) ) -> C e. ( A [,] B ) ) |
| 22 |
|
ubicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
| 23 |
22
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ C = B ) -> B e. ( A [,] B ) ) |
| 24 |
|
eleq1 |
|- ( C = B -> ( C e. ( A [,] B ) <-> B e. ( A [,] B ) ) ) |
| 25 |
24
|
adantl |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ C = B ) -> ( C e. ( A [,] B ) <-> B e. ( A [,] B ) ) ) |
| 26 |
23 25
|
mpbird |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ C = B ) -> C e. ( A [,] B ) ) |
| 27 |
18 21 26
|
3jaodan |
|- ( ( ( A e. RR* /\ B e. RR* /\ A <_ B ) /\ ( C = A \/ C e. ( A (,) B ) \/ C = B ) ) -> C e. ( A [,] B ) ) |
| 28 |
13 27
|
impbida |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( C e. ( A [,] B ) <-> ( C = A \/ C e. ( A (,) B ) \/ C = B ) ) ) |