Metamath Proof Explorer


Theorem eliccioo

Description: Membership in a closed interval of extended reals versus the same open interval. (Contributed by Thierry Arnoux, 18-Dec-2016)

Ref Expression
Assertion eliccioo A*B*ABCABC=ACABC=B

Proof

Step Hyp Ref Expression
1 prunioo A*B*ABABAB=AB
2 1 eleq2d A*B*ABCABABCAB
3 2 biimpar A*B*ABCABCABAB
4 elun CABABCABCAB
5 elprg CABCABC=AC=B
6 5 orbi2d CABCABCABCABC=AC=B
7 4 6 bitrid CABCABABCABC=AC=B
8 7 adantl A*B*ABCABCABABCABC=AC=B
9 3 8 mpbid A*B*ABCABCABC=AC=B
10 3orass CABC=AC=BCABC=AC=B
11 3orcoma CABC=AC=BC=ACABC=B
12 10 11 bitr3i CABC=AC=BC=ACABC=B
13 9 12 sylib A*B*ABCABC=ACABC=B
14 lbicc2 A*B*ABAAB
15 14 adantr A*B*ABC=AAAB
16 eleq1 C=ACABAAB
17 16 adantl A*B*ABC=ACABAAB
18 15 17 mpbird A*B*ABC=ACAB
19 ioossicc ABAB
20 19 sseli CABCAB
21 20 adantl A*B*ABCABCAB
22 ubicc2 A*B*ABBAB
23 22 adantr A*B*ABC=BBAB
24 eleq1 C=BCABBAB
25 24 adantl A*B*ABC=BCABBAB
26 23 25 mpbird A*B*ABC=BCAB
27 18 21 26 3jaodan A*B*ABC=ACABC=BCAB
28 13 27 impbida A*B*ABCABC=ACABC=B